RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Integration der Raketengleichung
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
Skynet



Anmeldungsdatum: 05.04.2006
Beiträge: 1

Beitrag Skynet Verfasst am: 05. Apr 2006 21:48    Titel: Integration der Raketengleichung Antworten mit Zitat

Ahoi Physikfreunde Wink

Ich habe mir da mal ein paar Gedanken gemacht und zwar müste es doch möglich sein die Raketengleichung ein weiteres mal zu integrieren um dann auf die Höhe zu kommen. Das währe ja eigentlich so als ob ich v integriere und dann s erhalte nur das bei der Raketengleichung ds ganze etwas komplizierter ist. grübelnd Ich habe mal einen Versuch gestartet und die Raketengleichung nach der Masse integriert und dachte das ich da schon auf dem richtigen Weg bin aber sicher bin ich mir nicht.
Habt ihr das schon mal gemacht? Wie geht man dabei vor?
dermarkus
Administrator


Anmeldungsdatum: 12.01.2006
Beiträge: 14788

Beitrag dermarkus Verfasst am: 05. Apr 2006 22:18    Titel: Antworten mit Zitat

Die Raketengleichung

http://de.wikipedia.org/wiki/Raketengleichung

ist ja eine Gleichung für die Geschwindigkeit v(t) einer Rakete in Abhängigkeit von ihrer Masse m(t), die von der Zeit abhängt.

Willst du sie integrieren, um auf die zurückgelegte Strecke zu kommen, dann musst du erst die Funktion m(t) kennen, durch die die Masse von der Zeit abhängt, und einsetzen.

Wenn ich mal annehme, dass pro Zeiteinheit delta t immer dieselbe Masse delta m ausgestoßen wird, dann wäre die Massenverlustrate



und



Willst du das ganze nicht im Weltraum berechnen, sondern für die Steighöhe auf der Erde, dann kommt zu der Raketengleichung noch die Geschwindigkeit hinzu, die durch die Erdbeschleunigung nach unten erzeugt wird. Für einen senkrechten Steigflug heißt die Gesamtfunktion, die du nach der Zeit integrieren musst, also:



Das heißt, sobald du die nach der Zeit integriert bekommst, (selber oder z.B. mit http://integrals.wolfram.com/index.jsp), hast du die Höhe in Abhängigkeit von der Zeit.

-----------------------------------

Das setzt als Näherung voraus, dass sich die Massenabnahme einer Rakete tatsächlich so linear beschreiben lässt, wie ich es oben angenommen habe, und dass sich die Erdbeschleunigung nicht stärker mit der Höhe ändert, als man es für die gewünschte Genauigkeit des Rechenergebnisses braucht.

Falls nötig, muss man also für m(t) und g(t) genauere Funktionen einsetzen, bevor man integriert.
Schüler
Gast





Beitrag Schüler Verfasst am: 05. Apr 2006 22:47    Titel: Antworten mit Zitat

dazu habe ich auch noch eine frage
und zwar wie kann man eine genaue Funktion für g(t) angeben?
Weil um die Erdbeschleunigung die zum Zeitpunkt t auf die rakete wirkt zu bekommen muss man die höhe zum zeitpunkt t kennen, aber um diese zu bekommen will man ja die geschwindigkeit-zeit funktion integrieren und dafür braucht man die funktion für g(t) bereits. Kann man dann überhaupt exakt eine funktion für g(t) angeben?



an den der das thema erstellt hat:
wenn du das integral per hand lösen möchtest, dann substitutiere erst den gesamten ausdruck im natürlichen logarithmus.
anschließend musst du den ausdruck ln(u) integrieren.
das integral davon erhälst du wenn du partitielle integration anwendest und dabei v=ln(u) v'=1/u
und z'=1 z=u
setzt
dann solltest du zu einer lösung kommen.
as_string
Moderator


Anmeldungsdatum: 09.12.2005
Beiträge: 5551
Wohnort: Heidelberg

Beitrag as_string Verfasst am: 05. Apr 2006 22:50    Titel: Antworten mit Zitat

Hallo!

Ja, sowas nennt man dann eine Differentialgleichung.

Gruß
Marco
Schüler
Gast





Beitrag Schüler Verfasst am: 05. Apr 2006 23:18    Titel: Antworten mit Zitat

und könntest du mir erklären wie man auf die differentialgleichung kommt?
Schüler
Gast





Beitrag Schüler Verfasst am: 05. Apr 2006 23:46    Titel: Antworten mit Zitat

also ich bin jetzt auf eine Differentialgleichung gekommen indem ich für g(t)
g(t)=gamma*Masse/h²(t) eingesetzt habe
dann habe ich
v(t)=h'(t) gesetzt und schon habe ich eine schöne differentialgleichugn
ich weiß jetzt nur nicht ob ich sie auflösen kann aber ich werd es versuchen
ich probier es mal mit dem exponentialansatz y=e^x und dann variation der konstante
aber bis hierhin ist doch hoffentlich alles richtig
as_string
Moderator


Anmeldungsdatum: 09.12.2005
Beiträge: 5551
Wohnort: Heidelberg

Beitrag as_string Verfasst am: 05. Apr 2006 23:49    Titel: Antworten mit Zitat

Ja, das hab ich auch so. Aber ich denke, dass Deine Ansätze da nicht funktionieren werden. unglücklich Vielleicht eher mit einem Reihenansatz, vielleicht Polynom? Ich bin leider nicht geübt im Lösen von DGL...
Viel Glück!

Gruß
Marco
dermarkus
Administrator


Anmeldungsdatum: 12.01.2006
Beiträge: 14788

Beitrag dermarkus Verfasst am: 06. Apr 2006 00:12    Titel: Antworten mit Zitat

Den Weg bin ich auch gerade gegangen:

Wenn man das genauere g(t) einsetzen möchte, dann lautet die Gleichung genaugenommen ja so:



Die Differentialgleichung aufzustellen würde so gehen:

Einen Ausdruck für g(h) müsste man sich aus dem Gravitationsgesetz holen:



und dann weiß man, dass v(t)=h'(t) die erste Ableitung von h nach der Zeit ist.

Das setzt man in die Gleichung für v(t) ein, und dann leitet man die ganze Gleichung noch auf beiden Seiten nach der Zeit ab, damit das Integral verschwindet.

Damit bekommt man als Differentialgleichung:



Aber die zu lösen, halte ich für nicht ganz ohne.
Gast






Beitrag Gast Verfasst am: 06. Apr 2006 00:40    Titel: Antworten mit Zitat

ok ich frag mal im matheforum ob man diese gleichung exakt und wenn ja wie auflösen kann
bei mir ist das problem, dass ich das t in dem glied mit dem H²(t) auch durch substitution nicht wegisoliert bekomme
wenn wenigstens das h(t) nicht quadratisch wäre könnte ich es durch eine kleine substitution super lösen.
zumindest ist die differentialgleichung nur erster ordnung
dermarkus
Administrator


Anmeldungsdatum: 12.01.2006
Beiträge: 14788

Beitrag dermarkus Verfasst am: 06. Apr 2006 16:18    Titel: Antworten mit Zitat

Na, für mich ist das eine Differentialgleichung zweiter Ordnung für h(t), die zudem ziemlich nichtlinear ist und einen zusätzlichen zeitabhängigen Term enthält.

Je nachdem, was man für m(t) konkret einsetzt, ändert sich sicher auch die Zeitabhängigkeit für das h(t), die man ansetzen kann und/oder die herauskommt.

Ich vermute mal, die Mathematiker werden sich einen konkreten Ausdruck für m(t) wünschen oder wählen, bevor sie anfangen, da einen Lösungsansatz zu suchen.

Und ich habe die Vermutung, dass man sowas heutzutage gerne mit Computerprogrammen wie z.B. Maple angeht, oder unter Umständen letztendlich numerisch löst.
Schüler
Gast





Beitrag Schüler Verfasst am: 07. Apr 2006 01:35    Titel: Antworten mit Zitat

m(t)=m0-alpha*t
mit m0 als ausgangsmasse
alpha= die gasmasse, welche in der sekunde aussträmt
das steht aber auch schon vorher da
ich denk mal auch dass eine numerische lösung das einzig sinnvolle ist und ich glaube auch einzig mögliche
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik