RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Integration einer Sägezahnspannung
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Elektrik
Autor Nachricht
Wolvetooth



Anmeldungsdatum: 13.01.2019
Beiträge: 260

Beitrag Wolvetooth Verfasst am: 29. Jun 2019 18:05    Titel: Integration einer Sägezahnspannung Antworten mit Zitat

Meine Frage:
Hallo!

Wie kommt man beim Integrieren auf:



Meine Ideen:
Ich habe meine Gleichung richtig integriert aber trotzdem kriege ich nicht das richtige Ergebnis. (Siehe Berechnung)

Ich bin seit 3 Stunden bei der gleichen Aufgabe.
könnte mir jemand bitte helfen?



Berechnung.jpg
 Beschreibung:

Download
 Dateiname:  Berechnung.jpg
 Dateigröße:  1.16 MB
 Heruntergeladen:  149 mal

Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4691

Beitrag Myon Verfasst am: 29. Jun 2019 21:38    Titel: Antworten mit Zitat

Integriert wird doch von 0 bis T, weshalb stehen also im Resultat 's (ich nehme an, dass es sich um diesen Buchstaben handelt)? Wenn Du in der letzten Gleichung setzt, ergibt sich das richtige Resultat.

Generell darf die Variable, über die integriert wird und die im Integrand steht (hier also ), nicht in den Integrationsgrenzen auftreten.
GvC



Anmeldungsdatum: 07.05.2009
Beiträge: 14838

Beitrag GvC Verfasst am: 30. Jun 2019 12:55    Titel: Antworten mit Zitat

Wolvetooth hat Folgendes geschrieben:
Ich habe meine Gleichung richtig integriert aber trotzdem kriege ich nicht das richtige Ergebnis. (Siehe Berechnung)


Es steht doch alles schon da. Wenn ich das richtig interpretiere, ist Dein Endergebnis



Jetzt brauchst Du nur den ersten Term unter der Wurzel durch T zu kürzen, während sich der zweite und dritte Term
(T²-T*T)=T²-T² aufheben. Dann bleibt stehen

Wolvetooth



Anmeldungsdatum: 13.01.2019
Beiträge: 260

Beitrag Wolvetooth Verfasst am: 30. Jun 2019 13:18    Titel: Antworten mit Zitat

Hallo, erstmal vielen Dank für die Antwort!

Myon hat Folgendes geschrieben:
(ich nehme an, dass es sich um diesen Buchstaben handelt)?


Es ist ein kleines t und ein großes T

Myon hat Folgendes geschrieben:
Wenn Du in der letzten Gleichung setzt, ergibt sich das richtige Resultat.


Warum muss man setzen? Du hast recht, jetzt habe ich das richtige Resultat, danke!!!
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15142

Beitrag TomS Verfasst am: 30. Jun 2019 13:29    Titel: Antworten mit Zitat

Du integrierst eine Funktion f über die Variable tau von 0 bis T und erhältst die Stammfunktion F zu f; also


_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
GvC



Anmeldungsdatum: 07.05.2009
Beiträge: 14838

Beitrag GvC Verfasst am: 30. Jun 2019 13:42    Titel: Antworten mit Zitat

Wolvetooth hat Folgendes geschrieben:
Es ist ein kleines t und ein großes T


Wie kann das sein? Der Effektivwert ist doch ein (quadratischer) Mittelwert, also eine zeitlich unabhängige Größe. Da kann die Variable t nicht drin vorkommen.

Du hättest Dir die Integration einfacher machen können, indem Du das Sägzahndreieck umgedreht hättest, also statt einer fallenden Funktion von U bis 0 die steigende Funktion von 0 bis U betrachtet hättest. Denn die Fläche unter der Quadratfunktion ist in beiden Fällen dieselbe. Und um nichts anderes als eine Flächenbestimmung handelt es sich bei allen Mittelwertrechnungen. Wenn Du also die Funktion



betrachtet und diese quadriert hättest



dann hätte die Integration so ausgesehen:



Wenn Du daraus die Wurzel ziehst, erhältst Du

Wolvetooth



Anmeldungsdatum: 13.01.2019
Beiträge: 260

Beitrag Wolvetooth Verfasst am: 30. Jun 2019 15:47    Titel: Antworten mit Zitat

GvC hat Folgendes geschrieben:


Wie kann das sein? Der Effektivwert ist doch ein (quadratischer) Mittelwert, also eine zeitlich unabhängige Größe. Da kann die Variable t nicht drin vorkommen.


So stand es in der Folie. (Siehe Folie) Das große T war die Periode und das kleine t die Zeit... So haben sie aus dem Integral entfernt und dann nur gelassen

GvC hat Folgendes geschrieben:
Du hättest Dir die Integration einfacher machen können, indem Du das Sägzahndreieck umgedreht hättest, also statt einer fallenden Funktion von U bis 0 die steigende Funktion von 0 bis U betrachtet hättest. Denn die Fläche unter der Quadratfunktion ist in beiden Fällen dieselbe. Und um nichts anderes als eine Flächenbestimmung handelt es sich bei allen Mittelwertrechnungen. Wenn Du also die Funktion



betrachtet und diese quadriert hättest



dann hätte die Integration so ausgesehen:



Wenn Du daraus die Wurzel ziehst, erhältst Du



Das ist ja praktisch, ich bin nicht darauf gekommen Hammer gute Idee! Danke



Folie.png
 Beschreibung:

Download
 Dateiname:  Folie.png
 Dateigröße:  16.73 KB
 Heruntergeladen:  106 mal

GvC



Anmeldungsdatum: 07.05.2009
Beiträge: 14838

Beitrag GvC Verfasst am: 30. Jun 2019 21:55    Titel: Antworten mit Zitat

Wolvetooth hat Folgendes geschrieben:
So stand es in der Folie


Ja, das ist aber vor der Integration. Bei Dir stand die Vriable aber auch nach der Integration noch drin. Und das kann, wie gesagt, nicht sein.
Wolvetooth



Anmeldungsdatum: 13.01.2019
Beiträge: 260

Beitrag Wolvetooth Verfasst am: 01. Jul 2019 19:14    Titel: Antworten mit Zitat

GvC hat Folgendes geschrieben:


Ja, das ist aber vor der Integration. Bei Dir stand die Vriable aber auch nach der Integration noch drin. Und das kann, wie gesagt, nicht sein.


Dann wie weiß ich, wann ich die Variable t = T setzen sollte?
GvC



Anmeldungsdatum: 07.05.2009
Beiträge: 14838

Beitrag GvC Verfasst am: 01. Jul 2019 23:20    Titel: Antworten mit Zitat

Wolvetooth hat Folgendes geschrieben:
Dann wie weiß ich, wann ich die Variable t = T setzen sollte?


Du scheinst nicht zu wissen, wie man integriert, und scheinst auch nicht nachvollziehen zu wollen oder zu können, was ich Dir aufgeschrieben habe.

Im hier vorliegenden Beispiel



muss die Funktion f(t)=t^2 über t von 0 bis T integriert werden. Bekanntermaßen ist die Stammfunktion F(t)=(1/3)*t³. Wenn es sich wie hier um ein bestimmtes Integral (mit unterer Grenze 0 und oberer Grenze T) handelt, dann schreibt man das so:



Die Angabe der Integrationsgrenzen bedeutet, dass anstelle der Variablen t zunächst die obere Grenze eingesetzt wird und davon derselbe Ausdruck mit der unteren Grenze subtrahiert wird:



Das Quadrat des Effektivwertes der Sägezahnspannung ergibt sich also zu



Kürzen und Wurzelziehen führt dann zum Endergebnis



Zu Übungszwecken schlage ich Dir vor, den Effektivwert einer Sägezahnspannung zu bestimmen, die nur über eine halbe Periode läuft, also in der Zeit von 0 bis (T/2) linear von 0 bis U ansteigt. Von (T/2) bis T ist die Spannung null. Kriegst Du das hin?
Wolvetooth



Anmeldungsdatum: 13.01.2019
Beiträge: 260

Beitrag Wolvetooth Verfasst am: 02. Jul 2019 11:18    Titel: Antworten mit Zitat

GvC hat Folgendes geschrieben:


Du scheinst nicht zu wissen, wie man integriert, und scheinst auch nicht nachvollziehen zu wollen oder zu können, was ich Dir aufgeschrieben habe.


Ich habe selbst das Integral gelöst, es war einfach nur ein Missverständnis mit dem T. Ich habe mir alles, was du mir aufgeschrieben hast, angeschaut. Es ist nicht, dass ich nicht lernen möchte

GvC hat Folgendes geschrieben:
Die Angabe der Integrationsgrenzen bedeutet, dass anstelle der Variablen t zunächst die obere Grenze eingesetzt wird und davon derselbe Ausdruck mit der unteren Grenze subtrahiert wir


Ja, ich habe einfach nur nicht gesehen, dass es in der Folie ein "T" statt ein "t" in der Integrationsgrenzen stand, deswegen war ich verwirrt. Aber danke smile

GvC hat Folgendes geschrieben:
Zu Übungszwecken schlage ich Dir vor, den Effektivwert einer Sägezahnspannung zu bestimmen, die nur über eine halbe Periode läuft, also in der Zeit von 0 bis (T/2) linear von 0 bis U ansteigt. Von (T/2) bis T ist die Spannung null. Kriegst Du das hin?


Ich werde es versuchen! Tanzen
Neue Frage »
Antworten »
    Foren-Übersicht -> Elektrik