RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Lagrangefunktion im Potentialfeld
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
MGestalt



Anmeldungsdatum: 28.01.2019
Beiträge: 1

Beitrag MGestalt Verfasst am: 28. Jan 2019 20:19    Titel: Lagrangefunktion im Potentialfeld Antworten mit Zitat

Meine Frage:
Hey,
Also meine Frage ist zu folgernder Aufgabe:
?ein Teilchen der Masse m bewege sich in einer Dimension in einem Potenzialfeld U(q). Es werde dabei von der zu proportionalen Kraft gebremst.
Dazu soll ich die newtonsche Bewegungsgleichung für die Gesamtkraft angeben und danach dies mit der folgenden Lagrange Funktion verifizieren:
[latex] (\frac{a}{b}\dot q^{2}-U(q))e^{2\gamma t}[\latex]

Ich bin jetzt über die Forensuche auf folgenden Beitrag gestoßen, welcher die gleiche Frage und Aufgabe enthielt, aber leider die Lösung nicht ausgeführt hat: https://www.physikerboard.de/topic,14944,-1-d-bewegung-in-potential-v(q)-und-m-reibung,-lagrange-funk.html

Meine Ideen:
Also für die Newtonsche bewegungsgleichung habe ich gesagt, es müsste ja so aussehen:
[latex] m\ddot q + 2\gamma m \dot q -U(q)=0

Wenn ich jetzt die lagrangefunktion in die Euler lagrangegleichung einsetze, bekomme ich folgendes raus:
(m \ddot q +w m \gamma \dot q - \fraq{dU(q)}{dq })e^{2 t \gamma}

Also passt die e Funktion noch nicht und die Ableitung des Potentials
Mir ist klar, dass q(t) als Lösung die e Funktion enthält. Sollte ich also die e Funktion in das q und seine Ableitungen?reinziehen? und es umbenennen?
Und wie löse ich das Problem, dass ich das Potential noch ableiten müsste?

Ich hoffe, es ist einigermaßen verständlich, ich freue mich über jede Hilfe
MGestalt.
Gast





Beitrag MGestalt. Verfasst am: 28. Jan 2019 20:33    Titel: Korrektur Antworten mit Zitat

Oh man, da bin ich durcheinander gekommen, sorry

Die erste Gleichung lautet


Der zerrissene Teil in meiner Lösung lautet


Wenn ich jetzt die lagrangefunktion in die Euler lagrangegleichung einsetze, bekomme ich folgendes raus:


Tut mir super leid
MGestalt2
Gast





Beitrag MGestalt2 Verfasst am: 28. Jan 2019 20:33    Titel: Korrektur Antworten mit Zitat

Oh man, da bin ich durcheinander gekommen, sorry

Die erste Gleichung lautet


Der zerrissene Teil in meiner Lösung lautet


Wenn ich jetzt die lagrangefunktion in die Euler lagrangegleichung einsetze, bekomme ich folgendes raus:


Tut mir super leid
MGestalt2
Gast





Beitrag MGestalt2 Verfasst am: 28. Jan 2019 20:34    Titel: Antworten mit Zitat

Oh man, da bin ich durcheinander gekommen, sorry

Die erste Gleichung lautet


Der zerrissene Teil in meiner Lösung lautet


Wenn ich jetzt die lagrangefunktion in die Euler lagrangegleichung einsetze, bekomme ich folgendes raus:


Tut mir super leid
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 3319

Beitrag Myon Verfasst am: 28. Jan 2019 21:54    Titel: Antworten mit Zitat

MGestalt2 hat Folgendes geschrieben:
Der zerrissene Teil in meiner Lösung lautet


Die Newtonsche Bewegungsgleichung ist



denn die Kraft im Potential ist .

Zitat:
Wenn ich jetzt die lagrangefunktion in die Euler lagrangegleichung einsetze, bekomme ich folgendes raus:

Das wäre ja noch keine Gleichung. Die Euler-Lagrange-Gleichung lautet



Und dies ist doch äquivalent zur Newtonschen Bewegungsgleichung.
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik