RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Mit Tensorprodukt rechnen? Wie?
Gehe zu Seite 1, 2  Weiter 
Neue Frage »
Antworten »
    Foren-Übersicht -> Quantenphysik
Autor Nachricht
gast454335
Gast





Beitrag gast454335 Verfasst am: 25. Jul 2015 19:02    Titel: Mit Tensorprodukt rechnen? Wie? Antworten mit Zitat

Meine Frage:
Hallo zusammen,
ich habe mal kurz eine Frage zum Tensorprodukt. Und zwar, wenn A und B
Matrizen sind und zwei Zustände, wie ist dann
definiert?

Meine Ideen:
ich kann natürlich die beiden Tensorprodukte ausrechnen und dann Matrix mit Vektor mal nehmen, aber wie ist das allgemein definiert, also in Abhängigkeit vom Tensor, kann man das iwie auseinanderziehen?
index_razor



Anmeldungsdatum: 14.08.2014
Beiträge: 2845

Beitrag index_razor Verfasst am: 25. Jul 2015 19:10    Titel: Re: Mit Tensorprodukt rechnen? Wie? Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
Meine Frage:
Hallo zusammen,
ich habe mal kurz eine Frage zum Tensorprodukt. Und zwar, wenn A und B
Matrizen sind und zwei Zustände, wie ist dann
definiert?


Das ist einfach definiert als .
gast454335
Gast





Beitrag gast454335 Verfasst am: 26. Jul 2015 08:32    Titel: Antworten mit Zitat

ahso, ok und wie sieht es für vier Matrizen aus:
index_razor



Anmeldungsdatum: 14.08.2014
Beiträge: 2845

Beitrag index_razor Verfasst am: 26. Jul 2015 08:59    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
ahso, ok und wie sieht es für vier Matrizen aus:


Dafür mußt du die Definition zweimal anwenden.
gast454335
Gast





Beitrag gast454335 Verfasst am: 26. Jul 2015 09:30    Titel: Antworten mit Zitat

also meinst du jetzt:

Jayk



Anmeldungsdatum: 22.08.2008
Beiträge: 1450

Beitrag Jayk Verfasst am: 26. Jul 2015 14:33    Titel: Antworten mit Zitat

index_razor hat Folgendes geschrieben:
gast454335 hat Folgendes geschrieben:
ahso, ok und wie sieht es für vier Matrizen aus:


Dafür mußt du die Definition zweimal anwenden.


Was soll das für eine Operation sein?
gast454335
Gast





Beitrag gast454335 Verfasst am: 26. Jul 2015 14:41    Titel: Antworten mit Zitat

die in der mitte ist eine matrix multiplikation
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 27. Jul 2015 00:01    Titel: Antworten mit Zitat

Schreib halt bitte mal den Zustand sowie die darauf wirkenden Operatoren konkret hin.
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 27. Jul 2015 07:18    Titel: Antworten mit Zitat

Ein Beispiel meinerseits:



index_razor



Anmeldungsdatum: 14.08.2014
Beiträge: 2845

Beitrag index_razor Verfasst am: 27. Jul 2015 07:24    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
also meinst du jetzt:



Ja, das stimmt. Das kannst du mit der Definition leicht beweisen. "Matrixmultiplikation" bedeutet einfach Hintereinanderausführung der beiden Operatoren und . Also gilt für jedes aus dem Tensorprodukt :
und per linearer Fortsetzung gilt das dann für jedes Element aus , da das Tensorprodukt ja durch Basen der Form aufgespannt wird. Also gilt auch .

Das war jetzt der "Physikerbeweis". Mathematiker beweisen die Existenz von und etc. basisunabhängig mit Hilfe universeller biliniearer Abbildungen. Danach ist eine bilineare Abbildungen auf , die ihren Bildbereich unter den Bildern aller bilinearen Abbildungen bis auf Isomorphie charakterisiert. Da man isomorphe Vektorräume sowieso nicht unterscheidet, ist das Tensorprodukt sozusagen die allgemeinste billineare Abbildung, die es auf geben kann. Die Existenz von Tensorprodukten von Operatoren mit der oben gezeigten Eigenschaft folgt dann ebenfalls.
gast454335
Gast





Beitrag gast454335 Verfasst am: 27. Jul 2015 09:08    Titel: Antworten mit Zitat

ah super, danke, ich wollte das anwenden, aber es funktioniert iwie nicht und zwar habe ich die Matrix
,

wobei P eine Matrix ist. Das soll auf

Dann komme ich (nicht korrekterweise) auf:

,

da


PS:


rauskommen sollte:
index_razor



Anmeldungsdatum: 14.08.2014
Beiträge: 2845

Beitrag index_razor Verfasst am: 27. Jul 2015 10:09    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:

rauskommen sollte:


Das ergibt keinen Sinn. Was soll das Tensorprodukt des Operators mit dem Vektor bedeuten? Hast du falsch geklammert? Hast du einen link zu der Aufgabe oder kannst den exakten Wortlaut hier posten?
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 27. Jul 2015 10:26    Titel: Antworten mit Zitat

Wenn die Klammerung passt, dann hast du richtig argumentiert



da für Projektoren



gilt.
gast454335
Gast





Beitrag gast454335 Verfasst am: 27. Jul 2015 10:52    Titel: Antworten mit Zitat

danke erstmal,
das steht aber auf dem Paper hier:

http://arxiv.org/pdf/quant-ph/0303081v1.pdf

und zwar auf Seite 2 rechts unten bei Nummerierung (7)

bei ihm kommt weder Null raus noch hat er die Klammern anders gesetzt,
wobei man das , wie ich es hier genannt habe, einfach von rechts an die Exp.funktionen multipl. kann ("ausklammern"), dann hat man die Klammer weg und es macht wieder Sinn.

Könntet ihr mir vll. auch sagen, ob es stimmt, dass für zwei Vektoren v, w und einer Matrix A gilt:

Das hat er glaub ich beim nächsten Schritt in (Rock benutzt
gast454335
Gast





Beitrag gast454335 Verfasst am: 27. Jul 2015 10:53    Titel: Antworten mit Zitat

in Nummerierung ( 8 )
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 27. Jul 2015 12:05    Titel: Antworten mit Zitat

irgendwie ist schon in (6) der Wurm drin











...

mit







d.h. man kann die Summe in gerade und ungerade Terme auseinanderziehen



daraus folgt



irgendwie ist die zweite Zeile in (6) für mich rätselhaft

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.


Zuletzt bearbeitet von TomS am 27. Jul 2015 20:00, insgesamt einmal bearbeitet
gast454335
Gast





Beitrag gast454335 Verfasst am: 27. Jul 2015 12:34    Titel: Antworten mit Zitat

ja, wobei p auch eine Matrix ist,
er hat ja geschrieben, dass die Baker Formel verwenden will (siehe (54)), was aber hier ja nicht geht mit Tensoren. Wenn man sich außerdem seine Lösung anschaut, dann müsste doch nach den Regeln oben 0 rauskommen, denn
und AC = 0
Daher schaut mir deine Lösung vielversprechender.

Angenommen wir rechnen falsch weiter, wie kommt er dann auf (7) und ( 8 )?
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 27. Jul 2015 12:58    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
ja, wobei p auch eine Matrix ist, ...

p ist halt ein beliebiger Operator

gast454335 hat Folgendes geschrieben:
... was aber hier ja nicht geht mit Tensoren ...

warum soll Baker-Campbell-Hausdorff nicht funktionieren?

gast454335 hat Folgendes geschrieben:
Wenn man sich außerdem seine Lösung anschaut, dann müsste doch nach den Regeln oben 0 rauskommen, denn
und AC = 0

ich sage ja, da ist irgendwo der Wurm drin

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 27. Jul 2015 13:46    Titel: Antworten mit Zitat

aber dann würde doch mit Baker folgen, dass



und der erste Term ist dann


und für den zweiten Term analog,
das wäre dann das was dransteht, wobei ich auch nicht weiß, warum das
jetzt nicht Null sein sollte
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 28. Jul 2015 00:23    Titel: Antworten mit Zitat

Nee, das stimmt so nicht.


Zur Erinnerung: die BCH-Formel sagt, dass



wobei das letzte Gleichheitszeichen für [X,Y] = 0 folgt.


Oben habe ich einen Ausdruck für den Exponenten der Summe hergeleitet; im folgenden geht es um das Produkt der Exponenten.

Zunächst ist



Wegen



muss nach BCH folgen, dass



Zunächst ist



Damit ist



Nun multipliziert man aus, schreibt die e-Funktion mittels sin und cos um und fasst geeignet zusammen. Dann folgt wiederum die oben hergeleitete Darstellung für U, also



q.e.d.
gast454335
Gast





Beitrag gast454335 Verfasst am: 28. Jul 2015 09:58    Titel: Antworten mit Zitat

ahh stimmt, die Einheitsmatrix vergessen, aber das Ergebnis sieht doch jetzt viel besser aus, man kann doch dann gleich mit den obigen Formeln ausmultiplizieren, dann würde folgen:



Wenn ich jetzt den Vektor

drauf anwende, komme ich auf

Das wäre nun das neue, richtige (7) im Paper. Und dann noch einmal drehen mit der Rotationsmatrix R ergibt dann:



passt das so?
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 28. Jul 2015 11:26    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
man kann doch dann gleich mit den obigen Formeln ausmultiplizieren, dann würde folgen:



wie kommst du drauf?

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 28. Jul 2015 11:55    Titel: Antworten mit Zitat

sorry, hab mich verrechnet, ich komme nach dieser Tensorproduktregel von oben auf

TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 28. Jul 2015 13:17    Titel: Antworten mit Zitat

Nee.




Der letzte Term verschwindet, da das Produkt orthogonaler Projektoren gleich Null ist.

Dann folgt



Die beiden ersten Terme heben sich weg.

Jetzt Umschreiben der Exponentialfunktion



Damit folgt zuletzt



Das passt zu meinem o.g. Ergebnis.

Außerdem erscheint als Zwischenergebnis wohl die von dir oben gesuchte Formel:


_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 28. Jul 2015 13:48    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:




meine Rechnung stimmt ja damit auch, dass ist nämlich genau bei dir die erste Gleichung.

dann steht das im Skript falsch drin, da kommt ein Plus statt ein Mal hin.
Die Gleichung (7) stimmt damit auch, habe es gerade nachgeprüft.

Jetzt ist es fast geschafft, nur noch bei der ( 8 ) weiß ich nicht, wie er die
exp(...) nach links vor dem Tensorprodukt rüberbringt. Weißt du wie er das geschafft hat.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 28. Jul 2015 14:16    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
meine Rechnung stimmt ja damit auch, dass ist nämlich genau bei dir die erste Gleichung.


Bei dir steht:



Das kann ich mit meinem Ausdruck nicht in Übereinstimmung bringen.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 28. Jul 2015 20:09    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
Jetzt ist es fast geschafft, nur noch bei der ( 8 ) weiß ich nicht, wie er die
exp(...) nach links vor dem Tensorprodukt rüberbringt. Weißt du wie er das geschafft hat.


das vorherige ist ok, aber nur ( 8 ) fehlt mir noch, ich glaube, dass das auch falsch ist, weil im Allgemeinen nicht gilt:



habs für beliebige 2x2 Matrizen probiert und da kommt was falsches raus.
aber diese Gleichung hat er glaub ich benutzt
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 28. Jul 2015 21:52    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
das vorherige ist ok, aber nur ( 8 ) fehlt mir noch, ich glaube, dass das auch falsch ist, weil im Allgemeinen nicht gilt:



habs für beliebige 2x2 Matrizen probiert und da kommt was falsches raus.
aber diese Gleichung hat er glaub ich benutzt

was sind A, v, w? im vorliegenden Fall ist immer klar, welcher Operator auf welchen Hilbertraum wirkt; aber jetzt schiebst du A zwischen beiden hin und her.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 28. Jul 2015 22:10    Titel: Antworten mit Zitat

also A sollte eine allgemeine Matrix sein, in unserem Fall wäre es einfach
und die v, w sind einfach beliebige Vektoren.
Auf was ich hinaus will ist, dass wenn ich
ausrechnen will, muss ich irgendwie dieses A
auf die andere Seite bringen, was ich aber nicht darf, deswegen scheint mir auch ( 8 ) falsch zu sein.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 28. Jul 2015 23:09    Titel: Antworten mit Zitat

Ich schau mir das vielleicht heute oder morgen an.

Wichtig ist, dass wir verstanden haben, dass in (6), 2. Zeile einfach das "+" zwischen den Klammern fehlt.

Als Tipps für (8) evtl. noch folgendes
1) Spin- und der Impuls-Anteil vertauschen immer
2) Evtl. mal folgendes ausprobieren (dabei verhält sich p wie eine Zahl)



Die beiden Klammern kannst du separat berechnen

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 29. Jul 2015 12:16    Titel: Antworten mit Zitat

cool, danke,
also ich probiers zu erst mal direkt:



dieses müsste ich iwie rüberkriegen, dann würde
das Ergebnis schon dranstehen

ich glaube, dass 2) nicht gehen würde, weil die Matrix immer nur auf die
erste Komponente des Tensors wirkt und damit bleibt exp(..) immer in der
zweiten Komponente
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 29. Jul 2015 14:18    Titel: Antworten mit Zitat



Das ist trivial, da exp(-ipl) als 1 auf den Spinanteil wirkt:


_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 29. Jul 2015 23:20    Titel: Antworten mit Zitat

hmm, also warum genau folgt das jetzt, es ist



warum sollte der letzt Term unsere Behauptung sein, ist denn ganz allg.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 30. Jul 2015 06:58    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
hmm, also warum genau folgt das jetzt, ...


wie gesagt, weil exp(-ipl) als 1 auf den Spin wirkt

gast454335 hat Folgendes geschrieben:
... warum sollte der letzt Term unsere Behauptung sein

was ist denn dein "?" bzw. dieser gesuchte letzte Term?

gast454335 hat Folgendes geschrieben:
ist denn ganz allg


Sicher nicht, weil A entweder auf den ersten oder den zweiten Hilbertraum wirkt. Schau mal ganz zu Beginn:



Es geht doch in unserem Fall immer aus der Form des Operators hervor, auf welchen Hilbertraum er wirkt.
gast454335
Gast





Beitrag gast454335 Verfasst am: 30. Jul 2015 08:53    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:

was ist denn dein "?" bzw. dieser gesuchte letzte Term?


das heißt, was kommt da hin, hast du dir quasi ausgesucht, ob die Matrix auf die erste Komponente wirkt oder nicht



aber ich darf auch nicht einfach diese beiden Matrizen vertauschen, iwie hab ich die mathem. Begründung noch nicht verstanden
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 30. Jul 2015 11:17    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:

Nein, das darfst du nicht!

Du machst es dir viel zu kompliziert. Was steht den letztlich da? Mit Wellenfunktione und einem einfachen Operator p sieht das wie folgt aus:



Nun schauen wir uns die Operatoren mal genauer an:





So einfach.


Jetzt zurück zu deiner Zeile:



ist sinnvoll, denn der erste Operator 1 wirkt auf den Spin, der zweite exp(-ipl) wirkt auf den Ort.



ist nicht sinnvoll, denn wie soll exp(-ipl) auf den Spin wirken? Das passt nicht.


Die einzige Problematik, die du hast, ist Buchhaltung und Reihenfolge.

Für einen Produkthilbertraum



mit Zuständen



ist jeder Operator, den du darauf definierst, von exakt dieser Struktur, d.h.



Die Wirkung des Operators auf Zustände lautet dann




Wenn du immer darauf achtest, dass sowohl deine Operatoren als auch deine Kets gleich sortiert bleiben, dann hast du dieses Problem nie. In deinem Fall solltest du festlegen, dass der erste Faktor dem Spin und der zweite psi zugeordnet ist und diese Reihenfolge immer stur beibehalten. Wenn dann mal ein einzelnen Operator dasteht, dann siehst du dem Typ des Operators an, auf welchen Teil des Zustandes er wirkt.

btw.: kein normaler Mensch würde in diesem speziellen Fall diese Notation verwenden; das ist einfach Käse, viel zu viel Schreibkram und einfach nur lästig; jeder weiß, dass die Ableitung auf x und die Matrix auf den Vektor wirkt; du schreibst ja auch nicht



sondern

gast454335
Gast





Beitrag gast454335 Verfasst am: 30. Jul 2015 11:45    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Wenn dann mal ein einzelnen Operator dasteht, dann siehst du dem Typ des Operators an, auf welchen Teil des Zustandes er wirkt.


ok, cool, danke, mein Problem war die ganze Zeit, dass ich den Impulsoperator als Matrix gesehen habe und wir quasi mit Matrizen "rumgeschoben" haben.

wobei bei bei ( 8 ) der ja auch die e-Fkt. nach links getan hat, obwohl sie
eigentlich nur auf den Ortsvektor wirkt und nicht auf den spin
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 30. Jul 2015 11:53    Titel: Antworten mit Zitat

Bingo!

Du kannst dir das auch wie folgt überlegen:

(A B C) (|b> |c> |a>) = C|c> A|a> B|b>

Aber immer schön sortieren macht's halt leichter.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
gast454335
Gast





Beitrag gast454335 Verfasst am: 30. Jul 2015 12:36    Titel: Antworten mit Zitat

willst du damit sagen, dass wenn ich den Impulsoperator in seiner Matrixdarstellung schreibe, das immer noch stimmt von der Rechnung her,

die hast doch die Vektoren vertauscht,

(A B C) (|b> |c> |a>) = C|c> A|a> B|b>?

die Farbe passt halt, aber z.B. war der Vektor |c> vorher in der Mitte und jetzt am Anfang, ich dachte die Reihenfolge bleibt einfach fest, sorry,
ich stell mich echt blöd an, aber das muss ich einfach verstehen
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 15358

Beitrag TomS Verfasst am: 30. Jul 2015 14:56    Titel: Antworten mit Zitat

gast454335 hat Folgendes geschrieben:
willst du damit sagen, dass wenn ich den Impulsoperator in seiner Matrixdarstellung schreibe, das immer noch stimmt von der Rechnung her,

Welche Matrixdarstellung?

Der Impulsoperator lautet



In dem Moment, wo da eine 2 * 2 Matrix steht, hast du bereits das Tensorprodukt gebildet, d.h.



gast454335 hat Folgendes geschrieben:
du hast doch die Vektoren vertauscht, ... die Farbe passt halt, aber z.B. war der Vektor |c> vorher in der Mitte ...

Ja, das war Absicht.

In dieser Notation wird die Buchhaltung halt nicht über die Reihenfolge sondern über die Farbe erledigt (was natürlich total unpraktisch ist). Wichtig ist nur, dass immer klar ist, welcher Operator auf welchen Ket wirkt. Und das ist klar.

Nochwas: ich habe den Eindruck, dass du da über nicht-kommutierende Operatoren nachdenkst. Das ist nicht zutreffend, den letztlich passiert folgendes


_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Neue Frage »
Antworten »
    Foren-Übersicht -> Quantenphysik