RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Poisson-Klammer ---> Kommutator
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Quantenphysik
Autor Nachricht
IronPhoenix



Anmeldungsdatum: 05.01.2017
Beiträge: 23

Beitrag IronPhoenix Verfasst am: 05. Jun 2018 14:16    Titel: Poisson-Klammer ---> Kommutator Antworten mit Zitat

In der klassischen Mechanik ist eine Groesse genau dann erhalten, wenn ihre Poisson-Klammer mit der Hamilton-Funktion verschwindet (beide Argumente nicht explizit zeitabhaengig). Das laesst sich einfach rechnen, ist also kein Problem.

Mir ist aber nicht klar, warum die folgende quantenmechanische Analogie gilt:
Verschwindet der Kommutator eines Operators mit dem Hamiltonian (beide wieder nicht explizit zeitabhaengig), so ist die entsprechende Groesse erhalten.

Wie kann das gezeigt werden?
Insbesondere wie kommt man mit der kanonischen (auch: ersten) Quantisierung von der Poisson-Klammer zum Kommutator?
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4271

Beitrag Myon Verfasst am: 05. Jun 2018 20:05    Titel: Antworten mit Zitat

Dass der Erwartungswert erhalten bleibt, wenn ein Operator mit dem Hamilton-Operator vertauscht, sieht man wie folgt:

TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14065

Beitrag TomS Verfasst am: 05. Jun 2018 22:02    Titel: Antworten mit Zitat

In der QM gilt zunächst die Schrödingergleichung für die Zeitabhängigkeit der Zustände; Operatoren sind zeitunabhängig.

Die Transformation von diesem sogenannten Schrödinger- ins Heisenbergbild führt auf zeitunabhängige Zustände und zeitabhängige Operatoren; letztere ist durch die Heisenbergschen Bewegungsgleichung gegeben. Die Form der Transformation garantiert, dass Operatoren, die mit dem Hamiltonian vertauschen, zeitunabhängig bleiben.

https://en.m.wikipedia.org/wiki/Heisenberg_picture

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
IronPhoenix



Anmeldungsdatum: 05.01.2017
Beiträge: 23

Beitrag IronPhoenix Verfasst am: 06. Jun 2018 20:52    Titel: Antworten mit Zitat

Hmm ... das sieht eigentlich gut aus, aber mit ist ein technisches Detail nicht klar.
Warum darf man von der totalen zur partiellen Ableitung gehen?
index_razor



Anmeldungsdatum: 14.08.2014
Beiträge: 2177

Beitrag index_razor Verfasst am: 07. Jun 2018 20:39    Titel: Antworten mit Zitat

Man geht eigentlich nicht von der totalen zur partiellen Ableitung über. Man definiert den Operator



über die Beziehung



Die rechte Seite wertet man über die Produktregel aus. Dabei kommt von vornherein nur eine Ableitung von nach t vor.

Weitere Zeitableitungen kommen erst nach Bildtransformationen ins Spiel



mit unitärem zeitabhängigen . Ein bißchen rumrechnen ergibt dann die Bewegungsgleichungen für



wobei der Generator der Bildtransformation ist. Hier bedeutet nun eigentlich



im neuen Bild dasselbe wie



im alten Bild, d.h es handelt sich um eine gewöhnliche Ableitung nach der Zeit. (Die Zeitabhängigkeiten sind aber natürlich in beiden Fällen verschieden.) Die unterschiedlichen Bezeichnungen sind wohl eher traditionell begründet. Und wichtig ist eigentlich nur, daß man



und



nicht durcheinander bringt.

( definiert übrigens, wegen das Heisenbergbild mit der Bewegungsgleichung



und das Schrödinger-Bild mit

)
IronPhoenix



Anmeldungsdatum: 05.01.2017
Beiträge: 23

Beitrag IronPhoenix Verfasst am: 17. Jun 2018 22:29    Titel: Antworten mit Zitat

Hehe. Ich war wohl etwas eingerostet, aber damit ist die Frage erledigt. Vielen Dank! Thumbs up!
Neue Frage »
Antworten »
    Foren-Übersicht -> Quantenphysik