RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Potential einer Hohlkugel mittels Poisson-Gleichung
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Elektrik
Autor Nachricht
dabafsdff
Gast





Beitrag dabafsdff Verfasst am: 22. Mai 2021 11:20    Titel: Potential einer Hohlkugel mittels Poisson-Gleichung Antworten mit Zitat

Meine Frage:
Hallo, ich hab ein Problem bei der Berechnung des Potentials innerhalb einer geladenen Hohlkugel (Radius R, Ladung Q) mit die unendlich dünn ist mittels Poisson Gleichung.
Wenn ich die Poisson Gleichung lösen will, muss ich ja integrieren. Und normalerweise macht man das ja von r (r hier < R) bis unendlich, weil im unendlichen das Potential verschwindet. Aber hier geht das nich, weil ja die Kugel bei r=R dazwischen ist. Deshalb hab ich von 0 bis r integriert. Allerdings geht der Wert des Integranten bei 0 gegen unendlich. Und ich denke mal das is nich richtig, weil dann rauskommt, das das Potential im inneren unendlich groß ist.

Meine Ideen:
Meine Idee wäre das doch von r bis unendlich zu integrieren. Allerdings klappt das bei mir iwi nicht
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6948
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Mai 2021 11:43    Titel: Antworten mit Zitat

Meinst du eine gleichmäßig geladene dünne Kugelschale? Ein wenig mehr Input hätte nicht geschadet..

Wenn es tatsächlich so gemeint ist (?), dann wäre eine Lösung der Poisson-Gleichung hier im Grunde ein Overkill, da du ja eine extreme Symmetrie vorliegen hast.

Aber wenn es unbeding sein muss, dann kannst du die Poisson-Gleichung im Inneren schreiben als



Du kannst dann noch setzen



Welche Lösungen für U(r) gibt es hier allgemein?

Welche (einzig vernünftige) Lösung ergibt sich daher für das U(r), wenn man annimmt, dass sich das Potenzial bei r=0 stetig verhält.?

Übrigens kann man sich hier auch anmelden... Thumbs up!

_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)


Zuletzt bearbeitet von schnudl am 22. Mai 2021 11:54, insgesamt einmal bearbeitet
dabafsdf



Anmeldungsdatum: 23.02.2020
Beiträge: 53

Beitrag dabafsdf Verfasst am: 22. Mai 2021 11:53    Titel: . Antworten mit Zitat

Hey,
danke für die Antwort. Ja die unendlich dünne Kugelschale ist gleichmäßig geladen.
Wie kommst du auf diesen Operator ? Bei Mir ist der radiale Teil des Laplace Operators:
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6948
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Mai 2021 11:58    Titel: Re: . Antworten mit Zitat

dabafsdf hat Folgendes geschrieben:
Bei Mir ist der radiale Teil des Laplace Operators:



ist das nicht das selbe??

_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
dabafsdf



Anmeldungsdatum: 23.02.2020
Beiträge: 53

Beitrag dabafsdf Verfasst am: 22. Mai 2021 12:04    Titel: Antworten mit Zitat

Ich glaube nicht. Also wenn ich bie deinem eine Ableitung ausführe:

das sieht anders aus als meiner

EDIT schnudl: Hab dir beim LaTeX nachgeholfen.


Zuletzt bearbeitet von dabafsdf am 22. Mai 2021 12:15, insgesamt einmal bearbeitet
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6948
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Mai 2021 12:14    Titel: Antworten mit Zitat

Du musst ja auch zwei mal ableiten. Dann kommst du auf



Wenn du deines ausrechnest, kommst du ebenfalls auf diesen Ausdruck. Also sind die Ausdrücke identisch.

_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
dabafsdf



Anmeldungsdatum: 23.02.2020
Beiträge: 53

Beitrag dabafsdf Verfasst am: 22. Mai 2021 12:21    Titel: Antworten mit Zitat

ah okay. jetzt habs ichs. dankeschön. hab mich in der ganzen latex schreibweise verloren gehabt Hammer habs jetzt auf blatt geschrieben und es hat geklappt
dann versuch ichs jetzt mal damit
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6948
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Mai 2021 12:24    Titel: Antworten mit Zitat

De facto bist du fertig. smile
_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
dabafsdf



Anmeldungsdatum: 23.02.2020
Beiträge: 53

Beitrag dabafsdf Verfasst am: 22. Mai 2021 12:29    Titel: Antworten mit Zitat

Also die allgemeine Form von U ist dann ja ein Polynom ersten Grades. Und weil das phi bei r=0 stetig sein soll, bleibt nur U=const als lösung (U=phi/r).
Und ich denke mal die Konstante bekommt man durch den Vergleich mit dem Potential außen. Weil da ja kein Potentialsprung sein darf.
Eine Frage noch: Wie kommt man auf so einen Anatz ? Gibt es da einen Trick ?


Zuletzt bearbeitet von dabafsdf am 22. Mai 2021 12:44, insgesamt 3-mal bearbeitet
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6948
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Mai 2021 12:30    Titel: Antworten mit Zitat

Zitat:
bleibt nur U=const als lösung


siehst du, so einfach ist das Thumbs up!

_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
dabafsdf



Anmeldungsdatum: 23.02.2020
Beiträge: 53

Beitrag dabafsdf Verfasst am: 22. Mai 2021 12:34    Titel: Antworten mit Zitat

Was meinten sie am Anfang eigentlich mit "extremer Symmetrie" und das es deshalb ein "Overkill" sei ?
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6948
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Mai 2021 12:42    Titel: Antworten mit Zitat

Wie kommt man auf solche Ansätze?

Ich kenne das von der Schrödinger Gleichung für das Zentralpotenzial. Aus diesem Zusammenhang ergibt sich das effektive Potenzial in der Quantenmechanik.

Aber sofort sehen würde ich es ehrlich gesagt auch nicht. Es hat sich im Studium irgendwie eingebrannt, dass es da "was gibt". Ich hab da auch eine Formelsamlung an der Rückseite meines Jackson, die in den Jahren schon sehr abgegriffen ist. Diese ist weitgehend identisch mit diesem Link. Hier findest du viele äußerst nützliche Identitäten, die man ständig benötigt und sich nicht jedes mal auf Neue herleiten möchte.

_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)


Zuletzt bearbeitet von schnudl am 22. Mai 2021 12:49, insgesamt 2-mal bearbeitet
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6948
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Mai 2021 12:44    Titel: Antworten mit Zitat

dabafsdf hat Folgendes geschrieben:
Was meinten sie am Anfang eigentlich mit "extremer Symmetrie" und das es deshalb ein "Overkill" sei ?

Wir sind hier alle auf du...

Overkill deshalb, da alles radialsymmetrisch ist und man mit dem Satz von Gauß sofort zeigen kann, dass im Inneren kein Feld herrscht und dadurch das Potenzial konstant sein muss.

_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
dabafsdf



Anmeldungsdatum: 23.02.2020
Beiträge: 53

Beitrag dabafsdf Verfasst am: 22. Mai 2021 13:09    Titel: Antworten mit Zitat

achsooo. okay dankeschön
Neue Frage »
Antworten »
    Foren-Übersicht -> Elektrik