RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Federschwingung Gleichung
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
annafragt



Anmeldungsdatum: 28.01.2021
Beiträge: 309

Beitrag annafragt Verfasst am: 11. Mai 2021 00:52    Titel: Federschwingung Gleichung Antworten mit Zitat

Hallo, ich bin bei folgender Thematik ein wenig verwirrt
Was meint :Es gilt nun Lösungsfunktionen für diese Differentialgleichung zu finden. Nach 3.13 müssen diese proportional zu ihrer zweiten Ableitung sein. Diese Bedingungen erfüllen die trigonometrischen Funktionen.
Bzw wie kommt man darauf und was meint das? (Proportionalität ist mir durchaus bekannt aber wieso wird das hier betont) und wieso müssen es dann gerade die trigonometrischen Funktionen sein? Eine Antwort würde mir sehr weiterhelfen. Vielen Dank!



0AB71F37-BEED-4BC1-8E30-B91740C3237A.jpeg
 Beschreibung:
 Dateigröße:  106.3 KB
 Angeschaut:  833 mal

0AB71F37-BEED-4BC1-8E30-B91740C3237A.jpeg


Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4926

Beitrag Myon Verfasst am: 11. Mai 2021 08:25    Titel: Re: Federschwingung Gleichung Antworten mit Zitat

annafragt hat Folgendes geschrieben:
Es gilt nun Lösungsfunktionen für diese Differentialgleichung zu finden. Nach 3.13 müssen diese proportional zu ihrer zweiten Ableitung sein. Diese Bedingungen erfüllen die trigonometrischen Funktionen.
Bzw wie kommt man darauf und was meint das?

Im Text geht es um einen Federschwinger. Für eine ideale Feder gilt



wenn x die Auslenkung aus der Ruhelage der Feder ist. Eine Masse m, die an der Feder befestigt ist, wird also bei einer Auslenkung mit



beschleunigt (von der Gewichtskraft werde hier abgesehen, die Feder liege horizontal; eine Gewichtskraft ändert an der grundsätzlichen Form der Gleichung nichts, verschoben wird lediglich die Ruhelage, in der Kräftegleichgewicht herrscht). Wenn x(t) die Bewegung des Teilchens angibt, so muss für diese Funktion x(t) die obige Gleichung gelten, die 2. Ableitung von x(t) ist proportional zu x(t). Und, hier wichtig, da ist ein Minuszeichen - k und m sind ja positive Konstanten.

Zitat:
wieso müssen es dann gerade die trigonometrischen Funktionen sein?

Ob alle möglichen Lösungen x(t) gerade trigonometrische Funktionen sein müssen ist eine andere Frage, auf jeden Fall sind Funktionen der Form (3.14) und (3.15) Lösungen der Gleichung, wie man durch Einsetzen sieht. Und das ist doch schon einmal positiv, man hat also Lösungen gefunden. Linearkombinationen von (3.14) und (3.15) stellen in der Tat auch alle möglichen Lösungen dar.
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6979
Wohnort: Wien

Beitrag schnudl Verfasst am: 11. Mai 2021 08:42    Titel: Antworten mit Zitat

Da eine lineare DG zweiter Ordnung höchstens zwei linear unabhängige Lösungen haben kann und für gegebene Anfangsbedingungen x(0), x'(0) die Lösung eindeutig sein muss, kommen keine weiteren linear unabhängigen Lösungen mehr in Frage (Eindeutigkeitstheorem).
_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
gast_free
Gast





Beitrag gast_free Verfasst am: 11. Mai 2021 09:46    Titel: Antworten mit Zitat

In jedem mechanischen System, in denen ein lineares Kraftgesetz gilt, können harmonische Schwingungen erzeugt werden. Also immer wenn die rücktreibende Kraft linear mit der Auslenkung zu nimmt, entstehen beim Anregen harmonische Schwingungen. Das gilt auch bei sinusförmigen Kraftgesetzen, wenn die Auslenkung nicht wesentlich größer als 5 Grad ist.


wenn


Solche Systeme werden im Eindimensionalen durch die folgende lineare, homogene Dgl. zweiter Ordnung beschrieben.



Aufgrund des Superpositionsprinzips darf man den folgenden Ansatz wählen.


Ableiten und Einsetzen.


Charakteristische Gl.

Allgemeine Lösung.



Anfangsbedingungen:
z.B r(0)=r_0 und v(0)=0





Mit Euler Relation.


Allgemeine Lösung (Nicht angeregt und ungedämpft):
annafragt



Anmeldungsdatum: 28.01.2021
Beiträge: 309

Beitrag annafragt Verfasst am: 12. Mai 2021 00:50    Titel: Re: Federschwingung Gleichung Antworten mit Zitat

Myon hat Folgendes geschrieben:
annafragt hat Folgendes geschrieben:
Es gilt nun Lösungsfunktionen für diese Differentialgleichung zu finden. Nach 3.13 müssen diese proportional zu ihrer zweiten Ableitung sein. Diese Bedingungen erfüllen die trigonometrischen Funktionen.
Bzw wie kommt man darauf und was meint das?

Im Text geht es um einen Federschwinger. Für eine ideale Feder gilt



wenn x die Auslenkung aus der Ruhelage der Feder ist. Eine Masse m, die an der Feder befestigt ist, wird also bei einer Auslenkung mit



beschleunigt (von der Gewichtskraft werde hier abgesehen, die Feder liege horizontal; eine Gewichtskraft ändert an der grundsätzlichen Form der Gleichung nichts, verschoben wird lediglich die Ruhelage, in der Kräftegleichgewicht herrscht). Wenn x(t) die Bewegung des Teilchens angibt, so muss für diese Funktion x(t) die obige Gleichung gelten, die 2. Ableitung von x(t) ist proportional zu x(t). Und, hier wichtig, da ist ein Minuszeichen - k und m sind ja positive Konstanten.

Zitat:
wieso müssen es dann gerade die trigonometrischen Funktionen sein?

Ob alle möglichen Lösungen x(t) gerade trigonometrische Funktionen sein müssen ist eine andere Frage, auf jeden Fall sind Funktionen der Form (3.14) und (3.15) Lösungen der Gleichung, wie man durch Einsetzen sieht. Und das ist doch schon einmal positiv, man hat also Lösungen gefunden. Linearkombinationen von (3.14) und (3.15) stellen in der Tat auch alle möglichen Lösungen dar.



Vielen Dank für die zahlreichen hilfreichen Antworten.
Ich wollte nur noch einmal nachfragen, woran ich jetzt genau gesehen habe, dass die 2. Ableitung von x(t) proportional zu x(t) ist? Weil sie quasi die selbe Gleichung ist nur mit 1/m multipliziert oder was? Tut mir leid, da hab ich mich selbst nochmal verwirrt und würde mich über eine Antwort freuen.
Danke nochmal
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4926

Beitrag Myon Verfasst am: 12. Mai 2021 07:09    Titel: Antworten mit Zitat

Ja, die 2. Ableitung von x(t) ist gleich der Funktion x(t) selbst, multipliziert mit dem konstanten Faktor -k/m (k und m sind durch die Situation vorgegeben und hängen nicht von x ab).
Dirkark
Gast





Beitrag Dirkark Verfasst am: 13. Mai 2021 17:14    Titel: Antworten mit Zitat

Eine gute Animation dazu findest du auf der Seite von leifiphysik, Stichwort Federpendel.
Qubit



Anmeldungsdatum: 17.10.2019
Beiträge: 617

Beitrag Qubit Verfasst am: 15. Mai 2021 21:12    Titel: Re: Federschwingung Gleichung Antworten mit Zitat

annafragt hat Folgendes geschrieben:

Bzw wie kommt man darauf und was meint das? (Proportionalität ist mir durchaus bekannt aber wieso wird das hier betont) und wieso müssen es dann gerade die trigonometrischen Funktionen sein? Eine Antwort würde mir sehr weiterhelfen. Vielen Dank!


Hier liefert dir übrigens der Energiesatz schon eine Integrationskonstante, allgemein:



Also:



Hier:


Also mit


erhält man durch Integration


(PS: die Untergerenze ist eigentlich ein Limes)

Oder nach s(t) aufgelöst:

Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4926

Beitrag Myon Verfasst am: 15. Mai 2021 22:19    Titel: Re: Federschwingung Gleichung Antworten mit Zitat

Qubit hat Folgendes geschrieben:

Mit der ursprünglichen Frage hat es ja nicht mehr viel zu tun, aber ich verstehe nicht alles. Dass die Gesamtenergie die Amplitude festlegt, ist klar, aber was ist hier s0? Und was ist t0?
Qubit



Anmeldungsdatum: 17.10.2019
Beiträge: 617

Beitrag Qubit Verfasst am: 15. Mai 2021 23:25    Titel: Re: Federschwingung Gleichung Antworten mit Zitat

Myon hat Folgendes geschrieben:
Qubit hat Folgendes geschrieben:

Mit der ursprünglichen Frage hat es ja nicht mehr viel zu tun, aber ich verstehe nicht alles. Dass die Gesamtenergie die Amplitude festlegt, ist klar, aber was ist hier s0? Und was ist t0?


Ich bin hier einfach von einer (harmonischen) Feder ausgegangen, die zum Zeitpunkt t0 um s0 aus der Ruhelage gedehnt ist.
Ist das nicht die Aufgabe?
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4926

Beitrag Myon Verfasst am: 15. Mai 2021 23:38    Titel: Antworten mit Zitat

Gut, ich sehe jetzt klarer. Du zeigst so, dass die Lösungen zum Potential V(s) trigonometrische Funktionen sind, und Du setzt voraus, dass .
Qubit



Anmeldungsdatum: 17.10.2019
Beiträge: 617

Beitrag Qubit Verfasst am: 15. Mai 2021 23:55    Titel: Antworten mit Zitat

Ja, genau.s0 soll die Amplitude sein.
,
roycy



Anmeldungsdatum: 05.05.2021
Beiträge: 724

Beitrag roycy Verfasst am: 24. Mai 2021 18:21    Titel: Re: Federschwingung Gleichung Antworten mit Zitat

annafragt hat Folgendes geschrieben:
Hallo, ich bin bei folgender Thematik ein wenig verwirrt
Was meint :Es gilt nun Lösungsfunktionen für diese Differentialgleichung zu finden. Nach 3.13 müssen diese proportional zu ihrer zweiten Ableitung sein. Diese Bedingungen erfüllen die trigonometrischen Funktionen.
Bzw wie kommt man darauf und was meint das? (Proportionalität ist mir durchaus bekannt aber wieso wird das hier betont) und wieso müssen es dann gerade die trigonometrischen Funktionen sein? Eine Antwort würde mir sehr weiterhelfen. Vielen Dank!


Vorschlag in Kurzform.



Scan_00678.pdf
 Beschreibung:

Download
 Dateiname:  Scan_00678.pdf
 Dateigröße:  174.32 KB
 Heruntergeladen:  88 mal

Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik