RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Kepler Problem/ Lagrange Gleichungen
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
1



Anmeldungsdatum: 11.11.2012
Beiträge: 1

Beitrag 1 Verfasst am: 11. Nov 2012 14:39    Titel: Kepler Problem/ Lagrange Gleichungen Antworten mit Zitat

Meine Frage:
Aufgabe 1 Kepler-Problem
Wir betrachten das Potential V(r) = /r,
r ( > 0) und verwenden ebene Polarkoordinaten (r,phi)
(aufgrund der Drehimpulserhaltung verlaufen alle Bahnkurven in einer Ebene).
a) Stellen Sie die Lagrange-Funktion und die Lagrange-Gleichungen auf! Reduzieren Sie
das Problem auf eine effektive Gleichung f¨ur r(t) mithilfe der Drehimpulserhaltung

Hallo! Also mit dieser Aufgabe haben wir leider Probleme...

Meine Ideen:
Also wir haben zuerst versucht die Gleichungen mit r in Abhaengigkeit von phi darzustellen, kamen dabei aber nur auf einen riesigen Term der ziemlich falsch aussah unglücklich
Ausserdem haben wir auch keine Ahnung wie wir die Drehimpulserhaltung reinbringen sollen. Es gilt ja :
mit L= .
aber wo wir das nun in der Gleichung verwenden koennen...

Waere schoen wenn ihr uns weiterhelfen koenntet.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14065

Beitrag TomS Verfasst am: 11. Nov 2012 15:52    Titel: Antworten mit Zitat

Zunächst mal verlaufen die Bahnen nicht alle in einer Ebene, weil Drehimpulserhaltung gilt. Sondern man kann für eine spezielle Bahn den Drehimpuls in z-Richtung festlegen und dann wird diese eine Bahn in der xy-Ebene verlaufen. Für andere Bahnen kann man andere Ebenen festlegen.

Da die phi-Koordinate zyklisch ist folgt eine Erhaltungsgröße, d.h.



Die letzte Gleichung kann man nach der Winkelgeschwindigkeit auflösen und diese dann die in die Lagrangfunktion einsetzen; damit sind Winkel und Winkelgeschwindigkeit eliminiert, d.h. man hat die Lagrangefunktion auf die eines eindimensionalen Problems reduziert



wobei L_z nur noch als konstanter Parameter fungiert.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Chuddyholic



Anmeldungsdatum: 18.07.2012
Beiträge: 6

Beitrag Chuddyholic Verfasst am: 11. Nov 2012 23:15    Titel: Antworten mit Zitat

hmm also ich hätte jetzt ...
aber wo kommt jetzt der Drehimpuls mit rein?
wie genau meinst du das mit dem nach umstellen? Damit komme ich leider auch nicht weiter unglücklich


Zuletzt bearbeitet von Chuddyholic am 11. Nov 2012 23:38, insgesamt einmal bearbeitet
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14065

Beitrag TomS Verfasst am: 11. Nov 2012 23:22    Titel: Antworten mit Zitat

Jetzt schreib doch deine Lagrangefunktion L erstmal ordentlich und fehlerfrei in LaTeX (dein letzter Ansatz ist noch nicht ganz korrekt). Mit L meine ich immer die Lagrangefunktion, mit L_z die z-Komponente des Drehimpulses (alle anderen Komponenten verschwinden wenn du die Bahn in die xy-Ebene legst).

Dann berechnest du aus L den von Drehimpuls L_z wie von mir angegeben. Da dieser erhalten (konstant) ist, solltest du anschließend die Gleichung



auflösen


_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Chuddyholic



Anmeldungsdatum: 18.07.2012
Beiträge: 6

Beitrag Chuddyholic Verfasst am: 11. Nov 2012 23:32    Titel: Antworten mit Zitat

Achso, man könnte ja L ausschreiben -
in Polarkoordinaten wäre
x , also

und das stelle ich dann nach um und setzte es in die Lagrangefunktion ein.

Aber jetzt hängt ja auch von ab, und wenn ich die Lagrangefunktion dann nach ableite kommt das doch wieder mit rein...
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14065

Beitrag TomS Verfasst am: 12. Nov 2012 07:10    Titel: Antworten mit Zitat

Du meinst im Folgenden offensichtlich L_z; hast du das aus der Euler-Lagrange-Gleichung bzw. als konjugierten Impuls berechnet?



Das löst du jetzt nach auf und

1) setzt in L ein
2) alternativ berechnest du die Euler-Lagrange-Gleichung für und setzt in diese eine (ist eigtl. der korrekte Weg)

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
pressure



Anmeldungsdatum: 22.02.2007
Beiträge: 2496

Beitrag pressure Verfasst am: 12. Nov 2012 09:36    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:

1) setzt in L ein
2) alternativ berechnest du die Euler-Lagrange-Gleichung für und setzt in diese eine (ist eigtl. der korrekte Weg)


2) ist nicht nur der bessere Weg. Wenn du 1) ausführst bekommt man einen Vorzeichenfehler, weil man eben nicht in der Lagrangefunktion den konjungierten Impuls von zyklischen Koordinaten durch eine Konstante ersetzen darf.

Was man alternativ machen kann (bei konstanter Energie, also nicht explizit zeitabhängiger Lagrangefunktion), ist bei der Gesamtenergie E=T+V die entsprechende Ersetzung vorzunehmen und dann wiederum die Lagrangefunktion gemäß L=T-V aufzustellen, wobei man den neu erhaltenen Ausdruck mit dem alten Potential zu einem effektive Potential zusammenfasst.
jh8979
Moderator


Anmeldungsdatum: 10.07.2012
Beiträge: 8228

Beitrag jh8979 Verfasst am: 12. Nov 2012 09:48    Titel: Antworten mit Zitat

pressure hat Folgendes geschrieben:

2) ist nicht nur der bessere Weg. Wenn du 1) ausführst bekommt man einen Vorzeichenfehler, weil man eben nicht in der Lagrangefunktion den konjungierten Impuls von zyklischen Koordinaten durch eine Konstante ersetzen darf.

Was man alternativ machen kann (bei konstanter Energie, also nicht explizit zeitabhängiger Lagrangefunktion), ist bei der Gesamtenergie E=T+V die entsprechende Ersetzung vorzunehmen und dann wiederum die Lagrangefunktion gemäß L=T-V aufzustellen, wobei man den neu erhaltenen Ausdruck mit dem Potential zu einem effektive Potential zusammenfasst.

So ein Quatsch... die Euler-Lagrange-Gleichungen sagen genau aus, dass der konjugierte Impuls konstant ist fuer zyklische Variablen. Beide Vorgehensweisen von TomS sind demnach äquivalent... und ob man das im Hamilton-Formalismus rechnet (T+V) oder mit Lagrange (T-V) ist natuerlich auch egal...
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14065

Beitrag TomS Verfasst am: 12. Nov 2012 11:07    Titel: Antworten mit Zitat

pressure hat Folgendes geschrieben:
2) ist nicht nur der bessere Weg. Wenn du 1) ausführst bekommt man einen Vorzeichenfehler, ...

nein, es gibt keinen Vorzeichenfehler, das funktioniert; das Problem kann theoretisch wo anders liegen (z.B. bei Systemen mit Zwangsbedingungen), aber nicht in diesem Fall.

pressure hat Folgendes geschrieben:
Was man alternativ machen kann (bei konstanter Energie, also nicht explizit zeitabhängiger Lagrangefunktion), ist bei der Gesamtenergie E=T+V die entsprechende Ersetzung vorzunehmen und dann wiederum die Lagrangefunktion gemäß L=T-V aufzustellen, wobei man den neu erhaltenen Ausdruck mit dem alten Potential zu einem effektive Potential zusammenfasst.

Im vorliegenden Fall geht es um die Drehimpulserhaltung sowie um das effektive Potential; also betrachten wir L_z und nicht E, das kommt später.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
pressure



Anmeldungsdatum: 22.02.2007
Beiträge: 2496

Beitrag pressure Verfasst am: 12. Nov 2012 12:04    Titel: Antworten mit Zitat

Ihr beide seid ja schnell am widersprechen, aber auch ein bisschen zu schnell.





Betrachten wir die hier eingeführte Lagrangefunktion und bilden daraus die Bewegungsgleichung für , so erhält man:



Setzen wir hier nun den Drehimpuls für ein, ergibt sich (die korrekte Bewegungsgleichung):



Führen wir die Ersetzung bereits in der Lagrangefunktion durch erhalten wir eine neue Lagrangefunktion



aus der die Bewegungslgeichung

,

resultiert. Und zum Erstaunen von euch beiden, sind die resultierenden Bewegungsgleichungen eben nicht identisch, sondern unterscheiden sich im Vorzeichen des Zentrifugalterm.

Also nochmal zusammengefasst: Es ist unzulässig Erhaltungsgrößen in die Lagrangefunktion einzusetzen.
Chuddyholic



Anmeldungsdatum: 18.07.2012
Beiträge: 6

Beitrag Chuddyholic Verfasst am: 12. Nov 2012 13:34    Titel: Antworten mit Zitat

pressure hat Folgendes geschrieben:


,



super =) das hatte ich am Ende auch raus
jh8979
Moderator


Anmeldungsdatum: 10.07.2012
Beiträge: 8228

Beitrag jh8979 Verfasst am: 12. Nov 2012 15:02    Titel: Antworten mit Zitat

pressure hat Folgendes geschrieben:
Ihr beide seid ja schnell am widersprechen, aber auch ein bisschen zu schnell.

Da hab ich wohl den Post von TomS nicht genau gelesen. Ich hatte nie vor irgendwas wieder in die Lagrangafunktion einzusetzen. Du hast natuerlich recht, dass man dasn icht machen darf (aber wieso sollte man ueberhaupt auf so eine Idee kommen? smile ).

Mea culpa.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14065

Beitrag TomS Verfasst am: 12. Nov 2012 22:26    Titel: Antworten mit Zitat

sorry, da hab' ich mich vertan; man darf diese Ersetzung in diesem Fall in der Hamiltonfunktion durchführen, nicht jedoch in der Lagrangefunktion
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik