RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Aufzug beschleunigung Weg
Gehe zu Seite 1, 2  Weiter 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 14:54    Titel: Aufzug beschleunigung Weg Antworten mit Zitat

Hallo

folgende Aufgabe:

Ein Aufzug fährt aus der 1. Etage eines Gebäudes. Er beschleunigt mit a1 und bremst mit a2.
Ermitteln sie die kürzeste Fahrzeit für die Höhe h. Er fährt aus dem Stand los und bremst vollständig
ab.
h=12m
a1=1,5m/s²
a2=0,6m/s²


Ich komme auf keinen Ansatz. Habt ihr einen Tipp für mich?

MFG
planck1858



Anmeldungsdatum: 06.09.2008
Beiträge: 4542
Wohnort: Nrw

Beitrag planck1858 Verfasst am: 21. Jan 2011 15:01    Titel: Antworten mit Zitat

Hi,

ich würde mir jetzt erstmal überlegen, wie denn die Bewegungsgleichung der beiden Bewegungen aussieht!!

_________________
Die Naturwissenschaft braucht der Mensch zum Erkennen, den Glauben zum Handeln. (Max Planck)

"I had a slogan. The vacum is empty. It weighs nothing because there's nothing there. (Richard Feynman)
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 15:05    Titel: Antworten mit Zitat

Es handelt sich bei beiden um gleichförmig beschleunigte Bewegungen. Und der Gesamtweg dieser beiden Bewegungen muss die Höhe ergeben. Mir fehlt jedoch die Zeit, in der jede Bewegung wirkt
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 16:44    Titel: Antworten mit Zitat

Skizze: Boden, Höhe h*, t* (wo umgeschaltet wird) und h, t (endgültige Höhe. Aufpassen mit den Vorzeichen.

1) Gleichung für h(t), wo letztendlich nur t und t* als Variable vorkommen.

2) Und v(t), wieder mit t*und t und der wichtigen Bedingung des Anhaltens v(t) = 0.

Zwei Gleichungen für zwei Unbekannte t, t*. Zusammengefaßt eine quadratische für t.

(Das scheint nichtmal eine Extremalaufgabe zu werden.)
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 17:15    Titel: Antworten mit Zitat

Ja so ne skizze hatte ich mir auch schon erstellt, aber wie soll ich das mathematisch ausdrücken?



stimmt das bis hierhin?
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 17:23    Titel: Antworten mit Zitat


Thumbs up!
Jetzt noch die Geschwindigkeit v_1 in dieser Höhe, also bei t_1.
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 17:27    Titel: Antworten mit Zitat

Die Geschwindigkeit vor dem Abbremsen ist doch



oder liege ich da falsch?
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 17:30    Titel: Antworten mit Zitat

Thumbs up!

Weiter: h(t) unter Beachtung Anfangsgeschwindigkeit v_1 und Anfangshöhe h_1 (und aufpassen: Bremsung).

Zeitmessung ab t_1, also (t - t_1)
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 17:33    Titel: Antworten mit Zitat

soll ich jetzt diese 3 formeln zusammen in eine bringen?



dann kann ich noch h1 ersetzen durch die formel von eben...

ergibt dann:

[/latex]

v1 kann ich auch noch einsetzen...



Zuletzt bearbeitet von Olli85 am 21. Jan 2011 17:52, insgesamt 3-mal bearbeitet
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 17:42    Titel: Antworten mit Zitat

Hast Du schon die Bedingung, daß oben gehalten wird v_2 = 0?
(Auch muß noch v_0, besser v_1, von oben ersetzt werden.)
Und paß mit den Symbolen auf, Du hast h(t = t_2 = Gesamtzeit)
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 17:45    Titel: Antworten mit Zitat

hm bei t_ges ist v_2 0. das ist klar...aber warum muss ich das in der formel haben? oder eher gesagt wohin?

Ich hab da ja jetzt stehen, dass die Höhe von 12m = meine Formel ist?
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 17:53    Titel: Antworten mit Zitat

Es sind immer noch t_2 und t_1 unbekannt; dafür muß diese Bedingung v_2 = 0 ausgewertet werden, nehme ich an.

[Bei mir läufts unrund auf dem Papier; muß nochmal alles durchchecken ... Sendepause]
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 17:58    Titel: Antworten mit Zitat

ok bedingung für v=0

franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 18:41    Titel: Antworten mit Zitat

So, wieder an Deck. Habe die (kontrollierten) Ergebnisse von einem zweiten Weg, verstehe aber meine Berechnung nicht mehr. Hammer
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 18:47    Titel: Antworten mit Zitat

Was hast du denn als Lösung herausbekommen und wie bist du dahin gekommen?
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 18:50    Titel: Antworten mit Zitat



Kann nicht stimmen, Einheiten. Wie ist die Geschwindigkeitsänderung im oberen Bereich. [Meine nackchen Zahlen nützen nichts ohne Rechenweg. Also dritte, vierte und fünfte Kontrolle. Thumbs up! ]
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 18:59    Titel: Antworten mit Zitat

franz hat Folgendes geschrieben:


Kann nicht stimmen, Einheiten. Wie ist die Geschwindigkeitsänderung im oberen Bereich. [Meine nackchen Zahlen nützen nichts ohne Rechenweg. Also dritte, vierte und fünfte Kontrolle. Thumbs up! ]



ich kann langsam nicht mehr folgen Klo
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 19:20    Titel: Antworten mit Zitat

Wir sind bei der Geschwindigkeit im oberen Bereich. Wie ändert sie sich von v_1 aus infolge der Abbremsung; bei einer mir -a_2 beschleunigten Bewegung? Vielleicht mal eine Skizze v(t) angefangen vom Anstieg 0 ... v_1 wegen a_1 und dann Abbremsung runter auf 0 wegen a_2.[/latex]

Zuletzt bearbeitet von franz am 21. Jan 2011 19:22, insgesamt einmal bearbeitet
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 19:21    Titel: Antworten mit Zitat

na gleichmäßig beschleunigt (negativ) bis auf v0
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 19:25    Titel: Antworten mit Zitat

Anders gefragt, wie hängen Beschleunigung und Geschwindigkeitsänderung und Zeit zusammen?
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 19:28    Titel: Antworten mit Zitat

franz hat Folgendes geschrieben:
Anders gefragt, wie hängen Beschleunigung und Geschwindigkeitsänderung und Zeit zusammen?


a ist konstant, bei dem rest weiß ich nicht was du meinst unglücklich
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 19:32    Titel: Antworten mit Zitat

Und wie ist a definiert?
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 19:34    Titel: Antworten mit Zitat

a=v/t
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 19:35    Titel: Antworten mit Zitat

Etwas genauer, vielleicht mit Worten: Was ist v, was t? Blick ins Tafelwerk ...

Zuletzt bearbeitet von franz am 21. Jan 2011 19:41, insgesamt einmal bearbeitet
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 19:41    Titel: Antworten mit Zitat

franz hat Folgendes geschrieben:
Etwas genauer, vielleicht mit Worten: Was ist v, was t?


V ist die Geschwindigkeit nach dem Beschleunigen auf die Höhe h1
t ist die verbleibende zeit zum abbremsen, also t_ges - t_beschleunigung
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 19:48    Titel: Antworten mit Zitat

Du spielst auf den unteren Abschnitt an. Gut, bleiben wir einen Moment dabei.

Zitat:
V ist die Geschwindigkeit nach dem Beschleunigen auf die Höhe h1

Genauer: Die Änderung der Geschwindigkeit von v = 0 unten auf v = v_1 beim Umschaltpunkt.

Zitat:
t ist die verbleibende zeit zum abbremsen, also t_ges - t_beschleunigung

Nein, welche Zeit gehört zum ersten Teil?
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 19:55    Titel: Antworten mit Zitat

franz hat Folgendes geschrieben:
Du spielst auf den unteren Abschnitt an. Gut, bleiben wir einen Moment dabei.

Zitat:
V ist die Geschwindigkeit nach dem Beschleunigen auf die Höhe h1

Genauer: Die Änderung der Geschwindigkeit von v = 0 unten auf v = v_1 beim Umschaltpunkt.

Zitat:
t ist die verbleibende zeit zum abbremsen, also t_ges - t_beschleunigung

Nein, welche Zeit gehört zum ersten Teil?


zum ersten teil gehört t1. und tges-t1 ist die zeit die ich noch zum abbremsen zur verfügung habe
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 19:59    Titel: Antworten mit Zitat

Genau, also ist .
Und jetzt gucken wir uns den oberen Abschnitt an
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 20:06    Titel: Antworten mit Zitat

franz hat Folgendes geschrieben:
Genau, also ist .
Und jetzt gucken wir uns den oberen Abschnitt an




jetzt stört mich immer noch das t2
Edit:

moment, v_2 ist ja 0...
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 20:14    Titel: Antworten mit Zitat

ich hab immer noch t1 und t2 in der gleichung und bekomme es einfach nicht raus
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 20:49    Titel: Antworten mit Zitat

Was haben wir bisher



Weil oben v = 0 sein sollte.

Rechte Gleichung auflösen. Damit kannst Du t_1 durch t_2 ausdrücken. Damit geht es dann bei h(t_2) weiter. [Der Weg funktioniert übrigens.]
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 21. Jan 2011 21:24    Titel: Antworten mit Zitat




so meintest du das mit dem ausdrücken?

dann ist die höhe vor dem abbremsen:



jetzt muss ich auf den weg von h1 den weg bis zur gesamthöhe addieren.



da hab ich ja wieder die verschiedenen zeiten drin Hammer
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 21. Jan 2011 22:46    Titel: Antworten mit Zitat





Hast ja schon mit h(t_2) begonnen (Das minus wg Abbremsung)




Da kommt dann irgendwas raus, damit hast Du die gesuchte Zeit .
Packo
Gast





Beitrag Packo Verfasst am: 22. Jan 2011 08:46    Titel: Antworten mit Zitat

Olli,
ist ja grauenhaft. Die Rechnung zieht sich schon über 3 Seiten!
Ich zeige dir, wie man sowas rechnet (alles in SI-Einheiten):

Wir können 3 Gleichungen aufstellen:
(1) v1 = 1,5 t1
(2) v1 = 0,6(t2-t1)
(3) v1*t2 = 2*12
das ergibt aus (1) und (2):
2,1 t1 = 0,6 t2 oder t2 = 3,5 t1

in (3) eingesetzt:
1,5 t1*3,5 t1 = 24
t1² = 4,57 also t1 = 2,138
kürzeste Fahrzeit = 3,5 t1 = t2 = 7,48 s
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 22. Jan 2011 11:08    Titel: Antworten mit Zitat

Freut mich für Dich, lieber Packo, daß Du post festum die elegantere Lösung gefunden hast! smile
Packo
Gast





Beitrag Packo Verfasst am: 22. Jan 2011 12:24    Titel: Antworten mit Zitat

franz,
dein Kommentar klingt fast so, als hättest du meine Berechnung nicht verstanden.
Wo siehst du denn da Abkürzungen?
Packo
Gast





Beitrag Packo Verfasst am: 22. Jan 2011 12:29    Titel: Antworten mit Zitat

Hallo franz nochmal,
jetzt hast du deinen Kommentar gelöscht!
Dadurch hat mein letzter Beitrag wieder keinen Sinn.
Olli85



Anmeldungsdatum: 31.12.2010
Beiträge: 30

Beitrag Olli85 Verfasst am: 22. Jan 2011 12:59    Titel: Antworten mit Zitat

Packo hat Folgendes geschrieben:
Olli,
ist ja grauenhaft. Die Rechnung zieht sich schon über 3 Seiten!
Ich zeige dir, wie man sowas rechnet (alles in SI-Einheiten):

Wir können 3 Gleichungen aufstellen:
(1) v1 = 1,5 t1
(2) v1 = 0,6(t2-t1)
(3) v1*t2 = 2*12
das ergibt aus (1) und (2):
2,1 t1 = 0,6 t2 oder t2 = 3,5 t1

in (3) eingesetzt:
1,5 t1*3,5 t1 = 24
t1² = 4,57 also t1 = 2,138
kürzeste Fahrzeit = 3,5 t1 = t2 = 7,48 s


Danke, dann geht es ja doch einfacher anscheinend. ich probier das jetzt mal

edit:

okay also die formel stimmt. die 3. gleichung verstehe ich aber nicht

3) v1*t2=2*h

Wenn ich mit der Geschwindigkeit vor dem Bremsen weiterfahre ujnd das über die gesamte Zeit, dann habe ich den doppelten Weg zurück gelegt?


Zuletzt bearbeitet von Olli85 am 22. Jan 2011 13:52, insgesamt 2-mal bearbeitet
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 22. Jan 2011 13:43    Titel: Antworten mit Zitat

Hallo Packo!

Ich hatte meine Äußerung auf das wesentliche reduziert. Sehe auch keinen Anlaß, über beide Rechenwege zu disputieren (hatte übrigens zwischenduch für mich noch einen dritten, graphischen).

Für viel wichtiger halte ich es, die Kenntnisse und Möglichkeiten des Fragestellers herauszufinden und solche Anregungen zu vermittenl, daß er sein Problem selber gebacken bekommt. Das dürfte schwieriger sein als eine flotte Fertiglösung und kann gelegentlich ziemlich mäandern - mustergültig bei Markus zu sehen. Soweit meine Intention.
Ein angenehmes Wochenende! smile
Packo
Gast





Beitrag Packo Verfasst am: 22. Jan 2011 13:58    Titel: Antworten mit Zitat

Olli,
dritte Gleichung.
Bei gleichmäßiger Beschleunigung gilt:

Wenn man einen Körper von null auf irgendeine Geschwindigkeit v beschleunigt und dann gleich wieder auf null abbremst, so ist der zurückgelegte Weg (egal wie die Beschleunigungen sind):
Weg = 1/2*v*tges.
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik