RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Extremwertaufgabe: minimale Reibungsarbeit mit zwei untersch
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
DavidPhysik1



Anmeldungsdatum: 18.11.2023
Beiträge: 1

Beitrag DavidPhysik1 Verfasst am: 18. Nov 2023 00:21    Titel: Extremwertaufgabe: minimale Reibungsarbeit mit zwei untersch Antworten mit Zitat

Meine Frage:
Ich finde leider zurzeit keine Lösungsformel für die Fragestellung: Ein Gärtner steht in der Ecke S einer quadratischen Rasenfläche und möchte mit seiner Schubkarre zur diagonal gegenüber liegenden Ecke E . Er überquert den Rasen auf einer Geraden, welche mit der Seitenlinie des Quadrates den Winkel ? einschließt und legt die restliche Distanz auf dem asphaltierten Weg zurück, welcher auf der anderen Seite an das Rasenquadrat anschließt. Der Reibungskoeffizient der Schubkarre auf dem Rasen beträgt ?_R = 0,64 und auf dem Asphalt ?_A = 0,35. Wie muss er den Winkel wählen, so dass die gesamte Reibungsarbeit auf dem Weg von S nach E möglichst klein wird?
Ich habe auch das Ergebnis: ? = 56,8°
In der Aufgabe wechseln immer wieder die gegebenen Werte und die Lösung, aber das Problem bleibt das gleiche, mir fehlen geometrische Werte für meinen Lösungsansatz. Ich bin mir nicht einmal ganz sicher, ob ich die Aufgabe richtig verstanden habe, für mich ist die Aufgabe nicht ganz klar.

Meine Ideen:
Ich habe es so verstanden, dass die quadratische Rasenfläche in einem Viereck liegt, und S und E diagonal zueinander die Ecken des Vierecks sind und S gleichzeitig das (linke untere) Eck der Rasenfläche ist. Der Weg setzt sich meines Verständnisses nach aus dem Weg von S zur oberen Kante der Rasenfläche und von diesem Punkt aus vermutlich mit einer etwas anderen Richtung zur Ecke E. ? soll denke ich der Winkel zwischen dem ersten Weg und der unteren Kante der Rasenfläche sein.
E_R=E_Rasen+E_Asphalt
E_Rasen=F_N*?_R*S_Rasen
entsprechend auch E_Asphalt
S_Rasen=Y_Rasen/sin(?)
S_Asphalt=sqrt(((Y_Ges-Y_Rasen)^2)+(X_Ges-X_Rasen)^2)
X_Rasen=Y_Rasen/tan(?)
Dann alles zusammenfügen und ableiten auf der Suche nach der tiefsten Stelle, aber das ergibt durch fehlende Informationen keine Lösung.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 18036

Beitrag TomS Verfasst am: 18. Nov 2023 08:26    Titel: Antworten mit Zitat

Guten Morgen und willkommen im Forum.

Bitte benutze den Formeleditor. Ist nicht so schwer, wenn du meinen Beitrag zitierst, siehst du wie's funktioniert. Und lade bitte eine Skizze hoch, damit wir sicher sind, dass wir ein gemeinsames Verständnis der Aufgabe haben.

Den von dir angegebenen Winkel kann ich in dem Quadrat nirgendwo identifizieren.

Mein Interpretation: der im folgenden verwendete Winkel alpha wird gegen die am Startpunkt angrenzende Seite des Quadrats aufgetragen und durchläuft den Bereich 0° (jeweils entlang der beiden Seiten des Quadrats) bis 45° (entlang der Diagonalen des Quadrats).

Die Arbeit W folgt gemäß



Die Masse m und die Seitenlänge L sind multiplikative Konstanten und letztlich irrelevant. In die Funktion w gehen zwei Strecken ein, die erste schräge von der ersten Ecke weg zur Seite, die zweite entlang der Seite zur diagonal gegenüberliegenden Ecke. Ausgedrückt durch den Winkel alpha liefert das



Zu berechnen und zu lösen ist



Alternativ kannst du dies zunächst durch die Höhe h des rechtwinkligen Dreiecks auszudrücken. Setzt man für die Höhe





so folgt für die Funktion w jetzt als Funktion von t



Zu berechnen und zu lösen ist




_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 5859

Beitrag Myon Verfasst am: 18. Nov 2023 08:52    Titel: Antworten mit Zitat

Offenbar wurde der Winkel andersrum gemessen, man muss den Ergänzungswinkel auf 90° nehmen, um auf die angegebene Lösung zu kommen.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 18036

Beitrag TomS Verfasst am: 18. Nov 2023 08:58    Titel: Antworten mit Zitat

Stimmt!
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik