RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Fadenpendel mit gleich geladenen Massen
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Elektrik
Autor Nachricht
ThisGuy
Gast





Beitrag ThisGuy Verfasst am: 26. Apr 2021 13:20    Titel: Fadenpendel mit gleich geladenen Massen Antworten mit Zitat

Meine Frage:
Zwei am gleichen Punkt aufgeh¨angte Fadenpendel (L¨angen L1 = L2 = L, Massen m1 = m2 = m, masseloser Faden) werden gleich geladen (Ladungen Q1 = Q2 = Q).
Es stellt sich am Aufhängepunkt der konstante Winkel ? zwischen den Fadenpendeln ein.
Die Gravitationskraft zwischen den Fadenpendelmassen ist gegenüber der Coulombkraft vernachlässigbar:
a) Zeigen Sie, dass die Berechnung des Winkels ? auf eine Gleichung der Form x^{6}+ k*x^{2} -k = 0 führt.
b) Die Massen oder die Ladungen der Fadenpendel sind nun unterschiedlich: Geben Sie
begr¨undet an, in welchem Fall die Auslenkwinkel der Fadenpendel aus der Vertikalen
verschieden sind.

Meine Ideen:
Mein Ansatz bei der a) wäre, dass man ein Kräftedreieck aus der Gewichtskraft und der Rückstellkraft, deren Betrag gleich der Coloumbkraft ist, erstellen kann. Der Winkel ließe sich nun über den Tangens bestimmen, welcher zuvor mittels der Gewichtskraft als Ankathete und der Rückstellkraft als Gegenkathete besitmmt werden kann.
Ich kann dabei allerdings nicht erkennen, wie man zu dieser Formel kommen soll.

Wenn mir jemand dabei helfen könnte, wäre ich sehr dankbar! smile
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4280

Beitrag Myon Verfasst am: 26. Apr 2021 14:21    Titel: Re: Fadenpendel mit gleich geladenen Massen Antworten mit Zitat

ThisGuy hat Folgendes geschrieben:
a) Zeigen Sie, dass die Berechnung des Winkels ? auf eine Gleichung der Form x^{6}+ k*x^{2} -k = 0 führt.

Sollte es nicht vielleicht heissen: x^6+k*x^2-k*L^2=0 ? Dann ginge es auch von den Einheiten her besser auf.

Zitat:
Mein Ansatz bei der a) wäre, dass man ein Kräftedreieck aus der Gewichtskraft und der Rückstellkraft, deren Betrag gleich der Coloumbkraft ist, erstellen kann.

Naja, Rückstellkraft... es handelt sich ja um eine Abstossung. Aber der Weg ist richtig: das Verhältnis von Coulomb- zu Gewichtskraft muss gleich dem Verhältnis der entsprechenden Dreiecksseiten sein, denn die resultierende Kraft muss in die Richtung des Fadens weisen. Die eine Kathete des Dreiecks (den halben Abstand der Ladungen) kannst Du als gesuchte Grösse x bezeichnen, für die 2. Kathete den Satz von Pythagoras verwenden.
ThisGuy
Gast





Beitrag ThisGuy Verfasst am: 27. Apr 2021 17:43    Titel: Antworten mit Zitat

Also im Bezug auf die Formel kann ich versichern, dass in der Aufgabenstellung kein x^6+k*x^2-k*L^2=0, sondern x^{6}+ k*x^{2} -k = 0 steht ^^
Vielleicht ist deine Annahme aber trotzdem korrekt und das L^2 wurde einfach weggelassen, was mir aber unsinnig erscheint. Genauso gut ist es möglich, dass die Aufgabenstellung fehlerhaft ist.

Wenn ich nun deinen Ansatz richtig verstehe, dann ist die Ankathete des Dreieck's die die Verbindungslinie zwischen dem Aufhängepunkt und dem Mittelpunkt zwischen den beiden Ladungen?

Und wenn ich den Satz des Pythagoras anwende, komme ich zu
, wobei x der halbe Abstand zwischen den Ladungen, L die Länge des Fadens und A die oben beschrieben Ankathete ist.

Wenn dies bisher korrekt ist, wie führt mich das nun weiter zu der gesuchten Formel x^6+k*x^2-k*L^2 ?
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 4280

Beitrag Myon Verfasst am: 27. Apr 2021 17:53    Titel: Antworten mit Zitat

Ja, das Verhältnis von Gravitations- zu Coulombkraft auf eine Ladung muss gleich dem Verhältnis der Katheten sein, also



Nun z.B. die Gleichung quadrieren und mit dem Nenner links multiplizieren.
ThisGuy
Gast





Beitrag ThisGuy Verfasst am: 27. Apr 2021 18:01    Titel: Antworten mit Zitat

Alles klar, ich werde es mir mal ansehen.
Vielen Dank! smile
Neue Frage »
Antworten »
    Foren-Übersicht -> Elektrik