RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Mathematische Begründung der Kreisbewegung
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
Feeder



Anmeldungsdatum: 05.04.2015
Beiträge: 142

Beitrag Feeder Verfasst am: 30. März 2019 10:29    Titel: Mathematische Begründung der Kreisbewegung Antworten mit Zitat

Hey,

ich wundere mich über Kreisbewegungen. Offensichtlich scheint ja eine Kraft, die auf einen Körper senkrecht zu seinem Geschwindigkeitsvektor wirkt, den Körper für einen kurzen Moment in eine Kreisbahn zu zwingen.

Also sollte ja folgendes gelten:



Das ist mathematisch übrigens hier bewiesen:
https://math.stackexchange.com/questions/2690416/mathematical-proof-of-uniform-circular-motion


Ich weiß das ist jetzt schwierig ausgedrückt. Aber das erklärt ja noch nicht die Kreisbahn, wenn man das Problem so erweitert das zu jedem Zeitpunkt die Kraft senkrecht zu Geschwindigkeit steht. Also wie beweis ich folgendes:

ML



Anmeldungsdatum: 17.04.2013
Beiträge: 2040

Beitrag ML Verfasst am: 30. März 2019 11:32    Titel: Re: Mathematische Begründung der Kreisbewegung Antworten mit Zitat

Hallo,

Feeder hat Folgendes geschrieben:

Ich weiß das ist jetzt schwierig ausgedrückt. Aber das erklärt ja noch nicht die Kreisbahn, wenn man das Problem so erweitert das zu jedem Zeitpunkt die Kraft senkrecht zu Geschwindigkeit steht.

Zur Kreisbahn wird die Bewegung nur dann, wenn die Kraft senkrecht auf der Bewegung steht und zu jedem Zeitpunkt den gleichen Betrag hat.

Dann entspricht die Kraft gerade der Zentripetalkraft. Diese Kraft kannst Du ziemlich leicht rechnerisch nachvollziehen. (Wir gehen also quasi "rückwärts" vor):

Für die Kreisbewegung mit dem Radius R in der z-Ebene gilt:


Nach der ersten Ableitung erhältst Du


und die für die Beschleunigung

Nach der erneuten Ableitung erhältst Du


Diese Beschleunigung hat den Betrag und ist immer zum Kreismittelpunkt gerichtet.


Viele Grüße
Michael
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 12085

Beitrag TomS Verfasst am: 30. März 2019 11:55    Titel: Antworten mit Zitat

Umgekehrt:

Schreiben wir





Dabei sind f, u die Beträge von F, v; n, e sind zwei orthogonale Einheitsvektoren



Die Bewegungsgleichung



lautet dann



Der Normalenvektor n ist dabei ein beliebiger Einheitsvektor in der Ebene senkrecht zu e. Insbs. könnten f und n zeitabhängig sein.

Nun kann man sich überlegen, welche Einschränkungen man vornehmen muss, um zur Kreisbahn zu gelangen.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Feeder



Anmeldungsdatum: 05.04.2015
Beiträge: 142

Beitrag Feeder Verfasst am: 30. März 2019 12:14    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Umgekehrt:

Schreiben wir





Dabei sind f, u die Beträge von F, v; n, e sind zwei orthogonale Einheitsvektoren



Die Bewegungsgleichung



lautet dann



Der Normalenvektor n ist dabei ein beliebiger Einheitsvektor in der Ebene senkrecht zu e. Insbs. könnten f und n zeitabhängig sein.

Nun kann man sich überlegen, welche Einschränkungen man vornehmen muss, um zur Kreisbahn zu gelangen.


Okay, und jetzt sagen wir, dass u und f konstant seien. Das sollte doch jetzt zu einer Kreisbahn führen ?
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 12085

Beitrag TomS Verfasst am: 30. März 2019 12:33    Titel: Antworten mit Zitat

Also



Projizieren wir mal auf e und n:





Eine notwendige Bedingung ist offenbar, dass das rechts stehende Skalarprodukt konstant ist.

Nun ist



Daher ist



Das liefert eine Bedingung für die zunächst beliebige Richtung f bezogen auf die Richtung e.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Feeder



Anmeldungsdatum: 05.04.2015
Beiträge: 142

Beitrag Feeder Verfasst am: 30. März 2019 12:58    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Also



Projizieren wir mal auf e und n:





Eine notwendige Bedingung ist offenbar, dass das rechts stehende Skalarprodukt konstant ist.

Nun ist



Daher ist



Das liefert eine Bedingung für die zunächst beliebige Richtung f bezogen auf die Richtung e.


Das kann nicht sein.

-->


Eine notwendige Bedingung muss scheinbar ja auch noch sein, dass

...
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 12085

Beitrag TomS Verfasst am: 30. März 2019 13:12    Titel: Antworten mit Zitat

Feeder hat Folgendes geschrieben:
Das kann nicht sein.

-->

Doch, kann sein. Dein Ergebnis steht zunächst da, und das habe ich noch umgeformt

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Feeder



Anmeldungsdatum: 05.04.2015
Beiträge: 142

Beitrag Feeder Verfasst am: 30. März 2019 13:26    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Feeder hat Folgendes geschrieben:
Das kann nicht sein.

-->

Doch, kann sein. Dein Ergebnis steht zunächst da, und das habe ich noch umgeformt


Vllt. liegt das ja gerade an mir, aber irgendwie würde ich eher durch n dividieren, statt zu multiplizieren.... Aber da das ja ein Vektor ist, ist mir allgemeint nicht klar was du gerade gemacht hast... grübelnd Wie hast du das n auf die andere Seite gebracht?
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 12085

Beitrag TomS Verfasst am: 30. März 2019 14:21    Titel: Antworten mit Zitat

Zunächst mal gilt ganz allgemein



In unseren Fall sind a und b zwei orthogonale Einheitsvektoren, d.h.



Damit hast du





Generell wäre es ein wichtiger Spezialfall, wenn der Winkel zwischen e und n



konstant wäre.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 30. März 2019 22:10    Titel: Antworten mit Zitat

Die Beschreibung der Bewegung in natürlichen Koordinaten dürfte die Frage am genauesten beantworten: danke!

Als Abschweifung sei vielleicht der Hinweis gestattet auf die Bewegung in Zentralpotentialen U(r) mit , wo sich die Möglichkeiten ergeben: Fall ins Zentrum / infinite Bewegung mit r_min oder finite mit offenen oder geschlossenen Bahnen. Die Kreisbewegung wird dabei zu einem Spezialfall.
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik