RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Eigenwertanalyse - Stabilität von Fahrrädern
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
manuel459



Anmeldungsdatum: 11.10.2016
Beiträge: 201

Beitrag manuel459 Verfasst am: 12. März 2021 15:46    Titel: Eigenwertanalyse - Stabilität von Fahrrädern Antworten mit Zitat

Hallo an alle,

mich verwirrt da etwas. Zunächst möchte ich aber sagen, dass ich mit der Mathematik im Hinblick auf Stabilitätsanalysen noch nie in Berührung gekommen bin.

Es geht um folgende Veröffentlichung: https://www.researchgate.net/publication/239293889_Linearized_dynamics_equations_for_the_balance_and_steer_of_a_bicycle_A_benchmark_and_review

Dort wird die Stabilität des Fahrrades untersucht. Zuerst betrachtet man die linearisierte Bewegungsgleichung in Matrixform. Eine gewöhnliche Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten. (In nicht-Matrixform wären das 2 gekoppelte lineare gewöhnliche DGL zweiter Ordnung mit konstanten Koeffizienten) Die Unbekannte ist ein Vektor, in dem der Kippwinkel des Fahrrades und der Einlenkwinkel stehen. (Seite 1968).

Durch einen Exponentialansatz (e^kx) für diese Unbekannte erhält man dann ein charakteristisches Polynom, dessen Nullstellen k dann die Eigenwerte sind.

Derselbe Vorgang wird hier

http://ruina.tam.cornell.edu/research/topics/bicycle_mechanics/JBike6_web_folder/JBhelp.htm#_Toc148410718 (Eigenvalues, Definition, Interpretation bzw. Linearized equations of motion - matrix form) erklärt - jedoch so, dass ich keinen Zusammenhang erkennen kann.

Ich verstehe einerseits nicht, wieso man einen Ansatz braucht, um die Eigenwerte zu bestimmen und auch nicht, was das mit meinem Verständnis von Eigenwerten aus der linearen Algebra (Ax=kx) zu tun hat.

Intuitiv stelle ich mir vor, dass man die gesamte Bewegungsgleichung als Matrix schreibt und diese die Unbekannte irgendwie abbildet - und zwar so, dass sich die Ableitung der Unbekannten nicht ändert.

Hat jemand Erfahrung bei solchen Themen und könnte mir qualitativ erklären, warum in den beiden Links so vorgegangen wird?

Vielen Dank!
index_razor



Anmeldungsdatum: 14.08.2014
Beiträge: 2311

Beitrag index_razor Verfasst am: 14. März 2021 10:54    Titel: Re: Eigenwertanalyse - Stabilität von Fahrrädern Antworten mit Zitat

manuel459 hat Folgendes geschrieben:

Ich verstehe einerseits nicht, wieso man einen Ansatz braucht, um die Eigenwerte zu bestimmen und auch nicht, was das mit meinem Verständnis von Eigenwerten aus der linearen Algebra (Ax=kx) zu tun hat.


Es sind genau die Eigenwerte aus der linearen Algebra gemeint. Um sie zu bestimmen, benötigst du natürlich keinen Ansatz für die Lösung der Differentialgleichung.

Es besteht aber ein Zusammenhang zwischen den Lösungen des Anfangswertproblems



und den Lösungen des Eigenwertproblems



Wenn nämlich eine Lösung von (EWP), dann ist eine Lösung von (AWP). Das folgt sofort aus

und .

Die Eigenschaften, wie Stabilität, Periodizität etc. der Lösung, lassen sich also direkt an den Eigenwerten ablesen. Deshalb spielt das Eigenwertproblem eine besondere Rolle bei der Lösung linearer Differentialgleichungen mit konstanten Koeffizienten.
manuel459



Anmeldungsdatum: 11.10.2016
Beiträge: 201

Beitrag manuel459 Verfasst am: 16. März 2021 16:02    Titel: Antworten mit Zitat

Sehr elegant! Vielen Dank für die präzise Antwort!

lG
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik