RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Dämpfungskonstante und -koeffizient bestimmen
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 28. Okt 2016 16:31    Titel: Dämpfungskonstante und -koeffizient bestimmen Antworten mit Zitat

Hey Leute,

ich will die Dämpfungskontante eines Drehschwingungssystem bestimmen.

Die Dämpfungskonstante ist ja wobei \alpha der Dämpfungskoeffizient und I das Tragheitsmoment des drehendend Körper(Scheibe) ist.

Der Dämpfungskoeffizient ist meine einzig unbekannte Größe, aber ich bin mir nicht sicher wie ich die bestimmen kann.

Ich bin folgendermaßen vorgegangen:
Ich habe mir die abklingende Schwingung zeichnen lassen und alle Hochpunkte(1. Bild) aufzeichnen und exponentiell annähern lassen. Anschließend habe ich diese Exp-Funktion zur abklingenden Schwingung hinzugefügt(2. Bild).

Die Exp-Funktion lautet:

Ist der Dämpfungskoeffizient dann einfach ? Ist das damit gemeint? Dann halt noch einfach einseitzen un die Dämpfungskonstante berechnen.

Gruß
Random



dämpfungskonstante.png
 Beschreibung:

Download
 Dateiname:  dämpfungskonstante.png
 Dateigröße:  28.97 KB
 Heruntergeladen:  514 mal

Auwi



Anmeldungsdatum: 20.08.2014
Beiträge: 602

Beitrag Auwi Verfasst am: 28. Okt 2016 16:40    Titel: Antworten mit Zitat

Vielleich ist das logarithmische Dekretment die passende Größe...
Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 28. Okt 2016 17:00    Titel: Antworten mit Zitat

Danke, stimmt.

Die Aufgabe ist nämlich:
1. Bestimmen Sie die Dämpfungskonstante aus der zeitlichen Abnahme der Amplitudenmaxima.

2. Zeichnen Sie die Amplitudenwerte in ein einfach-logarithmischens Papier und bestimmen Sie die Dämpfungskonstante aus der Steigung der Geraden.

Aufgabe2 wäre ja, was du erwähnt hast. Aber wie geht Aufgabe1?

So wie ich es erläutert habe?
Auwi



Anmeldungsdatum: 20.08.2014
Beiträge: 602

Beitrag Auwi Verfasst am: 28. Okt 2016 20:24    Titel: Antworten mit Zitat

Ich meine:

Das ganze kann man sicher auch logarithmisch über viele Amplituden "mitteln", das dürfte dann die "Steigung" dieser Funktion sein.
Auch die Kreisfrequenz der gedämpften Schwingung hängt von "delta" ab.
Meines Wissens gilt für sie:

= Kreisfrequenz der ungedämpften Schwingung
(Fehler in der ersten Formel beseitigt, vergessen, durch T zu dividieren)


Zuletzt bearbeitet von Auwi am 04. Nov 2016 13:46, insgesamt 2-mal bearbeitet
franz



Anmeldungsdatum: 04.04.2009
Beiträge: 11573

Beitrag franz Verfasst am: 28. Okt 2016 20:52    Titel: Re: Dämpfungskonstante und -koeffizient bestimmen Antworten mit Zitat

Random hat Folgendes geschrieben:

grübelnd
Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 28. Okt 2016 23:08    Titel: Antworten mit Zitat

Verstehe, danke.

1. Okay, d.h wenn ich die Amplituden einfach logarithmisch darstelle auf der y-Achse, dann ergibt die Steigung meine Dämpfungskonstante?

2. Ist aber jetzt -1/22=-0,0454545 auch meine Dämpfungskonstante? (Ja sry, ich habe das - vergessen, oder was meintest du @franz?)
thx2
Gast





Beitrag thx2 Verfasst am: 28. Okt 2016 23:33    Titel: Antworten mit Zitat

Die Aufgabe ist etwas irreführend

Die Scheibe wurde um 100mm ausgelenkt
und dann der Startpunkt auf Null gesetzt

Diese 100mm muss man aber bei der Berechnung wieder abziehen

Aus dem 1.Bild nimmt man 2 Punkte

und dann wie üblich

Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 29. Okt 2016 08:20    Titel: Antworten mit Zitat

Hmm ok danke.

Aber wir sehen ja im 2. Teil die gedämpfte Schwingung und ich hab mir die Peaks, also Hochpunkte, rausgesucht und diese verbunden. Das Programm hat mir dann die oben geschriebene Exponentialfunktion ausgegeben.

Dann müsste doch die "Steigung" der EXP-Fkt. -1/22 sein, oder nicht? Also wie k die Steigung von e^kx wäre. Und -1/22 wäre dann mein Dämpfungskoeffizient.

Funktioniert das so?
thx2
Gast





Beitrag thx2 Verfasst am: 29. Okt 2016 09:26    Titel: Re: Dämpfungskonstante und -koeffizient bestimmen Antworten mit Zitat

Random hat Folgendes geschrieben:

Aber wir sehen ja im 2. Teil die gedämpfte Schwingung und ich hab mir die Peaks, also Hochpunkte, rausgesucht und diese verbunden. Das Programm hat mir dann die oben geschriebene Exponentialfunktion ausgegeben.

Die Exp-Funktion lautet:


gesucht wird eine Grenzkurve der Form

dazu muss man von den gegebenen Werten 100mm abziehen

wenn du die 100mm nicht abziehst müsste so etwas

herauskommen

Aber keine -90.6mm

Vielleicht hat man in der Aufgabe nur eine sehr ungenaue Exponentialfunktion
Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 29. Okt 2016 11:28    Titel: Antworten mit Zitat

Ja aber wie man sieht, liegt doch die Exponentialfunktion genau an?

Oder sollte diese Exponentialfunktion genau bei y=100mm ausklingen?

Denn wie es aussieht klingt diese bei Null aus.
thx2
Gast





Beitrag thx2 Verfasst am: 29. Okt 2016 13:05    Titel: Antworten mit Zitat

Random hat Folgendes geschrieben:
Ja aber wie man sieht, liegt doch die Exponentialfunktion genau an?

Ich war bisher aufgrund dieser Formel

der Meinung,dass hier folgende Dämpfung vorliegt (Wirbelstrom?)

Ist das so?

Wenn ja kann man nicht irgend eine Exponentialfunktion nehmen
sondern nur die,die ich hingeschrieben habe

Random hat Folgendes geschrieben:

Oder sollte diese Exponentialfunktion genau bei y=100mm ausklingen?

Wenn es sich um die Standardaufgabe handelt
Ja

Random hat Folgendes geschrieben:

Denn wie es aussieht klingt diese bei Null aus.

diese

klingt bei -90.6 aus

Am besten nochmal die ganze Aufgabe hinschreiben
Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 29. Okt 2016 15:42    Titel: Antworten mit Zitat

Genau, es ist eine Wirbelstromdämpfung. Danke.

Die Aufgabe ist noch immerdieselbe, ja:
Random hat Folgendes geschrieben:

1. Bestimmen Sie die Dämpfungskonstante aus der zeitlichen Abnahme der Amplitudenmaxima.

2. Zeichnen Sie die Amplitudenwerte in ein einfach-logarithmischens Papier und bestimmen Sie die Dämpfungskonstante aus der Steigung der Geraden.
?


Denke, dass es sich bei Nr. 1 einfach um das Finden einer Exponentialfunktion handelt, die auch bei 100 ausklingt und eben schön auf die Peaks passt.

Ich bin jetzt nach deinen Vorschlägen vorgegangen:
Die ersten beiden positiven Peaks lauten:
283.8mm bei t=0,98s
259.8mm bei t=2,46s

Die Abklingkonstante

Also müsste meine errechnete Exponentialfunktion lauten:

Die Funktion habe ich dann wieder mit dem Programm hinzugefügt und es kommt folgendes Bild raus: siehe Anhang

Wie man sieht, passt die Exponentialfunktion noch immer nicht genau auf die Peaks rauf. Waurum nicht?



dämpfungskonstante2.png
 Beschreibung:

Download
 Dateiname:  dämpfungskonstante2.png
 Dateigröße:  20.74 KB
 Heruntergeladen:  897 mal

thx2
Gast





Beitrag thx2 Verfasst am: 29. Okt 2016 17:40    Titel: Antworten mit Zitat



1 und 2 bedeutet nicht,dass die beiden Hochpunkte nebeneinanderliegen müssen
Im Gegenteil
Sie sollte weit auseinanderliegen
(aber nicht zu weit nach rechts gehen wegen der Ungenauigkeit)

Ich habe zB
1s 184mm und
11.5s 45mm
ich habe die 100mm abgezogen (ist besser)



Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 29. Okt 2016 19:08    Titel: Antworten mit Zitat

Danke für die Antwort.

Aber es hat sich ned viel geändert. Die Kurve passt sich nie an die Peaks an.

Jetzt habe ich gewählt. Also Amplitude bei 183 und 145 (100 vorher abgezogen).

(Wenn ich mit 183mm das mache, ändert es auch nix)

Warum funktioniert das nicht so wie man denkt? Und ich bezweifle, dass das Programm Origin Pro 2016 falsch zeichnet :?.



dämpfungskonstante3.png
 Beschreibung:

Download
 Dateiname:  dämpfungskonstante3.png
 Dateigröße:  14.3 KB
 Heruntergeladen:  374 mal

thx2
Gast





Beitrag thx2 Verfasst am: 29. Okt 2016 19:44    Titel: Antworten mit Zitat



wenn tx=t1 dann ist Ax=A1

also



da kann man jetzt die 100mm dazuaddieren



es ist aber so,dass man die Funktion

bisher nur mit einfachen Mitteln gesucht hat und deshalb darf man
keine allzugroße Genauigkeit erwarten
die gibt es aber meistens sowieso nicht
Random



Anmeldungsdatum: 25.01.2016
Beiträge: 42

Beitrag Random Verfasst am: 29. Okt 2016 21:50    Titel: Antworten mit Zitat

Hm ja, ist halt ungenau.

Kann man sowas nicht genauer machen?

Oder ist das so, dass mein Schwingungssystem nie 100% Exponentiell abklingen kann, d.h. so eine nach den Amplitudenmaxima abklingende Funktion ist gar ned definiert bzw. gibt es nicht?

Und was ist mit Aufgabe2 gemeint?
thx2
Gast





Beitrag thx2 Verfasst am: 30. Okt 2016 10:03    Titel: Antworten mit Zitat

Random hat Folgendes geschrieben:

Kann man sowas nicht genauer machen?

Mit linearer Regression

Random hat Folgendes geschrieben:

Oder ist das so, dass mein Schwingungssystem nie 100% Exponentiell abklingen kann, d.h. so eine nach den Amplitudenmaxima abklingende Funktion ist gar ned definiert bzw. gibt es nicht?

Es gibt noch die Lagerreibung und die Wirbelstrombremse arbeitet sich
auch nicht so exakt

Random hat Folgendes geschrieben:

Und was ist mit Aufgabe2 gemeint?

Amplitudenwerte logarithmieren
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik