RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Übergang vom Orts- in den Impulsraum
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Quantenphysik
Autor Nachricht
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 15. Jul 2012 20:05    Titel: Übergang vom Orts- in den Impulsraum Antworten mit Zitat

Hallo,

ich befasse mich grad mit der Arbeit "http://wenku.baidu.com/view/6e34ac1ffc4ffe473368ab5a.html###" (Seite 132/133), in dem es um die Beschreibung von der quadratischen Dispersion von "flexual" Moden in einer Membran geht.

Die genaue Frage wäre dabei erstmal, wie man von der Gleichung (126) auf die Gleichung (129) kommt?
Wie wird der Nabla-Operator vom Orts- in den Impuls-Raum transformiert?
In den theo. Festköperbüchern steht geschrieben, dass eine Funktion der Form in den Impuls-Raum durch
transformiert werden kann, wobei hier für die Dimension steht.
Kann mir hier jemand helfen????
LG
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14064

Beitrag TomS Verfasst am: 15. Jul 2012 20:24    Titel: Antworten mit Zitat

Die Transformation vom Orts- in den Impulsraum ist gegeben durch die Fouriertransformation



Für die Differentation gilt dann



In kartesischen Koordinaten kann man das sofort auf n Dimensionen und damit auch komponentenweise auf den Nablaoperator verallgemeinern.

Aber in der Festkörperphysik kommt oft noch die zusätzliche Eigenschaft der Periodizität im Ortsraum d.h. die Darstellung dieser Symmetrie im Impulsraum mittels der Blochwellen hinzu.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Chillosaurus



Anmeldungsdatum: 07.08.2010
Beiträge: 2440

Beitrag Chillosaurus Verfasst am: 15. Jul 2012 20:29    Titel: Re: Übergang vom Orts- in den Impulsraum Antworten mit Zitat

DerVonNebenan hat Folgendes geschrieben:
Hallo,
ich befasse mich grad mit der Arbeit "http://wenku.baidu.com/view/6e34ac1ffc4ffe473368ab5a.html###" (Seite 132/133),

Das ist ja asiatisch.
Zitat:
[...]
In den theo. Festköperbüchern steht geschrieben, dass eine Funktion der Form in den Impuls-Raum durch
transformiert werden kann, wobei hier für die Dimension steht.
[...]

Das steht da gewiss nicht, da die Funktion f in beiden Fällen Funktion des Impulses k ist.
Von der Orts- in die Impulsdarstellung kommt man mit einer Fourier-Transformation.
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 15. Jul 2012 21:09    Titel: Antworten mit Zitat

Hallo,

habe ich eben bei meiner Rechnung auch gesehen, dass die genannte Transformation von mir so nicht stimmt. Diese habe ich aus meiner Vorlesung. In den Büchern steht natürlich das richtig (habe wohl was falsch abgeschrieben).
Wenn nun sich

das so schreiben lässt, dann dürfte ich es richtig berechnet haben.
Nun wird ja diese kanonische Quantisierung mit dem Kommutatur betrachtet. Wie wird daraus nun der angebene Hamiltonian konstruiert?
LG

edit: Sorry, dass ich die asiatische Seite hier angeben habe. Von zu Hause kann ich keine Veröffnetlichungen runtenladen und habe diese genannte Seite oben bei google gefunden.
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 20. Jul 2012 18:19    Titel: Antworten mit Zitat

Hallo,

ich bin nun dabei, aus der Heisenberg-Gleichung die angebene Dispersions zu bestimmen:






, da der Ortsoperator mit sich selber kommutiert.

Zusammengefasst ergibt sich also:


Meine Frage wäre nun, wie ich diese Gleichung lösen kann, damit ich auf die angebene Dispersion komme?

LG
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14064

Beitrag TomS Verfasst am: 20. Jul 2012 19:21    Titel: Antworten mit Zitat

Ohne dass du uns verrätst, wie die Operatoren definiert sind und was sie bedeuten, kann dir dabei niemand helfen
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 20. Jul 2012 19:38    Titel: Antworten mit Zitat

Hallo,

das ist ja die Frage....Ich frage mich auch die ganze Zeit, wie die Heisenberg-Gleichung gelöst werden soll. Ich habe jetzt einfach mal einen Ausschnitt aus der Arbeit hier als Bild angehängt. Aus der Elastizitätstheorie kann man dabei die Energie für eine "Zerknüllung" der Membran bestimmen zu:



Dabei wurde in den Impuls-Raum transformiert (129).
Ich habe das nun so verstanden, dass ein Impuls-Operator eingeführt wurde, womit dann der Hamiltionen durch einen kin. + pot. Anteil aufgestellt werden kann (131), wobei der Ortsoperator (Auslenkung der Membran in z-Richtung) darstellt. Danach wird über die Heisenberg-Bewegungsgleichung die Dispersion bestimmt.

LG



bersicht.jpg
 Beschreibung:
 Dateigröße:  17.59 KB
 Angeschaut:  3783 mal

bersicht.jpg


TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14064

Beitrag TomS Verfasst am: 20. Jul 2012 19:54    Titel: Antworten mit Zitat

OK, so langsam sehe ich klarer.

Ich denke, zunächst hast du keine explizite Zeritabhängigkeit, d.h.



Dann sieht deine erste Bewegungsgleichung vernünftig aus; Hamiltonian quadratisch in P, d.h. Bewegungsgleichung linear in h. Du benötigst aber nochmals eine heisenbergsche Bewegungsleichung für P, die du analog ableitest.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 20. Jul 2012 20:00    Titel: Antworten mit Zitat

Angeben ist , was heißt, dass hier keine Zeitabhängigkeit drin steckt.
Die Frage wäre jetzt aber, warum benötigt man noch eine zweite Heisenberg-Gleichung?
Meinst du eine Gleichung für und dann nochmal für .

LG
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14064

Beitrag TomS Verfasst am: 20. Jul 2012 20:04    Titel: Antworten mit Zitat

Man benötigt immer beide Gleichungen



für jeden Operator O eine; bei dir sind es unendlich viele P's und h's.

Rechne doch mal ein einfaches Beispiel zu warm werden, den harmonischen Oszillator:



d.h.
- die Bewegungsgleichung für x
- die Bewegungsgleichung für p
- die Lösung x(t), p(t)

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 20. Jul 2012 20:27    Titel: Antworten mit Zitat

Okay. Habe das eine Rechnung für den QM-Oszillator gefunden.

Zusammen hätte ich dann:




Desweiteren wäre dann wohl hier .
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14064

Beitrag TomS Verfasst am: 20. Jul 2012 20:29    Titel: Antworten mit Zitat

Hast du die Bewegungsgleichung für den harmonischen Oszillator auch gelöst?
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 20. Jul 2012 20:32    Titel: Antworten mit Zitat

Ich habe jetzt in einem Vorlesungsskript von mir die komplette Rechnung am harm. QM Oszillator gefunden. Denke, dass das somit dann klar ist. Muss nur nochmal verstehe, warum die beiden Heisenberg-Gleichungen quadriert werden =).

edit: Bräuchte doch nochmal kurz Hilfe




Wie wäre dann der weitere Weg, so dass ich zwei getrennte Gleichungen für den Ort und den Impuls bekomme, ohne Mischterme?
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 14064

Beitrag TomS Verfasst am: 20. Jul 2012 21:35    Titel: Antworten mit Zitat

Zwei Linearkombinationen wie beim harmonischen Oszillator sowie bestimmung der Koeffizienten der Linearkombinationen als Funktion von k?
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
DerVonNebenan



Anmeldungsdatum: 15.07.2012
Beiträge: 12

Beitrag DerVonNebenan Verfasst am: 20. Jul 2012 21:59    Titel: Antworten mit Zitat

Mein Ansatz wäre nun einfach:
Ich möchte ja die Lösung für haben. Daher schreibe ich das Ganze um in eine DGL 2. Ordnung:




Dann einfach dort oben einsezten und alles in ein Matheprogramm getippt, was die Lösung ausgibt.

Also müsste ich am Ende (indem ich den Impuls in der zweiten Gleichung umschreibe zu ) folgende Gleichung lösen:



*edit: So ist nun gelöst und kommt auf die richtige Abhängigkeit.
Neue Frage »
Antworten »
    Foren-Übersicht -> Quantenphysik