RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Lagrange Mechanik: Rotationsenergien und Trägheitsmomente
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
Markus2309
Gast





Beitrag Markus2309 Verfasst am: 22. Aug 2022 17:37    Titel: Lagrange Mechanik: Rotationsenergien und Trägheitsmomente Antworten mit Zitat

Meine Frage:
Hi Zusammen, es geht um folgendes Problem aus dem Buch von Nolting, Analytische Mechanik.

Ein Zylinder rollte auf der Innenfläche eines größeren Hohlzylinders ab. Bestimmen Sie zunächst die Lagrange-Funktion.

Nun gut, Lagrange-Funktion ist L = T - V mit T = kinetische Energie und V = potentielle Energie. Mich beschäftigt der kinetische Term mit der Rotationsenergie. Dazu muss man die Rotationsgeschwindigkeit des Zylinders wissen. Die Verbindungslinie der Mittelpunkte beider Zylinderquerschnitte liefert zwei Winkel. Einmal einen Winkel \phi zwischen besagter Verbindungslinie und der y-achse (hier gerade nach oben in der Ruhelage gewählt) und einen Winkel \theta der angibt, wieviel sich der Zylinder um sich selbst gedreht hat.

Daher lässt sich schließen, dass die Winkelgeschwindigkeit ist, also die Summe beider Winkeländerungen. (Der genaue Weg wieso das gilt ist mir nicht ganz klar, ich vermute, da sich der Zylinder um sich selbst dreht und zusätzlich abrollt). Anschließend wird diese Winkelgeschwindigkeit in die Formel für die Rotationsenergie eingesetzt, mit dem Träghheitsmoment eines Zylinders, welcher sich um seine Symmetrieachse dreht.

Mein Problem:
Wenn die Erklärung für die Formel für die Winkelgeschwindigkeit stimmt, dann gehört doch zu jeder einzelnen Rotationsform ein anderes Trägheitsmoment, welches ich mit dem Satz von Huygens-Steiner berechnen muss. Dann kommt allerdings nicht die selbe Lagrange Funktion raus ( siehe mein Lösungsweg, habe beides durchgerechnet). Was habe ich hier falsch gemacht? Kann man Rotationsbewegungen nicht superpositionieren und wenn nicht, wieso nicht?

Für jede weiterhelfende Antwort bedanke ich mich jetzt schoneinmal herzlilch!


Meine Ideen:
https://abload.de/image.php?img=screenshot2022-08-221ejdob.png

hoffe der Link funktioniert, die Frage sollte aber auch so verständlich sein
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 5114

Beitrag Myon Verfasst am: 22. Aug 2022 21:10    Titel: Antworten mit Zitat

Willkommen in diesem Forum

Ich bin nicht sicher, was Du mit verschiedenen Rotationsformen mit jeweiligen Trägheitsmomenten meinst.
Die kinetische Energie kann man als Summe aus der Translationsenergie des Schwerpunkts (1. Summand) und der Rotationsenergie um den Schwerpunkt (2. Summand) sehen - der Satz von Steiner wird dann nicht benötigt:



Bei der letzten Gleichung wurde verwendet, dass



gilt. Dabei bin ich davon ausgegangen, dass bei einer Auslenkung aus der Ruhelage die beiden Winkel jeweils entgegengesetzte Vorzeichen haben.

Altnernativ könnte man die kinetische Energie auch durch eine alleinige Rotationsbewegung um den momentanen Berührungspunkt zwischen den beiden Zylindern ausdrücken. Das Trägheitsmoment des kleinen Zylinders bez. dieser Drehachse ergibt sich dann aus dem Satz von Steiner zu



und man erhält die gleiche kinetische Energie wie oben:

Markus2309
Gast





Beitrag Markus2309 Verfasst am: 23. Aug 2022 09:35    Titel: Antworten mit Zitat

Danke für deine Antwort.
Ich habe es verstanden, ich dachte ich könne den Rotationsprozess in zwei Rotationen einteilen, einmal das Abrollen und einmal die Rotation um sich selbst (wie die Erde um die Sonne). Nur ist die kinetische Energie nicht linear, weshalb sich das anschließend nicht addieren lässt.

Magst du mir grade noch zeigen, wie du auf kommst?
Mathefix



Anmeldungsdatum: 05.08.2015
Beiträge: 5435

Beitrag Mathefix Verfasst am: 23. Aug 2022 10:34    Titel: Antworten mit Zitat

Ist der Hohlzylinder um seinen Schwerpunkt drehbar gelagert?
Markus2309
Gast





Beitrag Markus2309 Verfasst am: 23. Aug 2022 10:39    Titel: Antworten mit Zitat

Der Hohlzylinder ist fest, der kleiner Vollzylinder rollt auf der Innenseite des Hohlzylinders ab.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 5114

Beitrag Myon Verfasst am: 23. Aug 2022 10:54    Titel: Antworten mit Zitat

Zum Winkel: Relevant für die Rotationsenergie des kleinen Zylinders ist ja der Winkel/die Winkelgeschwindigkeit bezüglich einer raumfesten Achse. In der beigefügten Grafik wäre der Zylinder um den Winkelbetrag



ausgelenkt verglichen mit der Lage am tiefsten Punkt (theta wäre hier negativ, phi positiv). Mit Vorzeichen beträgt der Auslenkungswinkel des kleinen Zylinders



Ist eine etwas gebastelte Erklärung, aber so habe ich es versucht mir klarzumachen.

PS: Es handelt sich nur um eine Skizze, der eingezeichnete Winkel theta ist etwas zu gross geraten.



grafik1.png
 Beschreibung:
 Dateigröße:  116.97 KB
 Angeschaut:  728 mal

grafik1.png


Markus2309
Gast





Beitrag Markus2309 Verfasst am: 23. Aug 2022 11:51    Titel: Antworten mit Zitat

Danke sehr!
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik