RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Anzahl heller Streifen im ersten Beugungsmaximum
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Optik
Autor Nachricht
True
Gast





Beitrag True Verfasst am: 04. Jul 2022 17:46    Titel: Anzahl heller Streifen im ersten Beugungsmaximum Antworten mit Zitat

Meine Frage:
Hallo,

eine Teilaufgabe verlangt die Berechnung der Anzahl heller Streifen im ersten Beugungsmaximum bei einem Doppelspalt. Gegeben sind die Wellenlänge mit 633nm und der Spaltabstand ist 6 mal so groß wie die Spaltbreite.

Meine Ideen:
Ich weiß dass im zentralen Maximum folgende Formel gilt:


mit m = d / a

N ist die Anzahl heller Streifen
m ist die Ordnung 1,2,3,...
d ist der Spaltabstand
a ist die Spaltbreite

Ich verstehe aber nicht wie die hellen Streifen im 1. oder 2. Beigungsmaximum berechnet werden können ?
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 5114

Beitrag Myon Verfasst am: 04. Jul 2022 20:38    Titel: Antworten mit Zitat

Die Einhüllende (Interferenzmuster der einzelnen Spalten) hat Minima für



Maxima treten auf für



Offenbar geht es um die Anzahl Maxima zwischen den beiden Minima der Einhüllenden mit m1=1 und m1=2, also für Maxima mit

True
Gast





Beitrag True Verfasst am: 05. Jul 2022 15:36    Titel: Antworten mit Zitat

Ich hab hier mal ein gutes Beispiel gefunden.

Bild aus externem Link als Anhang eingefügt. Bitte keine externen Links verwenden. Steffen

So ich weiß wie ich die Anzahl der Interferenzstreifen im zentralen Maximum berechnen kann. Nur wie berechne ich die Anzahl für die nächsten Maxima ? Ich sehe auf dem Bild das links und rechts jeweils 3 Maxima erkennbar sind, nur weiß ich nicht wie sowas berechnet wird.

Bei deinem Ansatz komme ich irgendwie nicht weiter oder verstehe ich etwas falsch ?



a2o4uiI.png
 Beschreibung:
 Dateigröße:  114.08 KB
 Angeschaut:  332 mal

a2o4uiI.png


Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 5114

Beitrag Myon Verfasst am: 05. Jul 2022 15:53    Titel: Antworten mit Zitat

True hat Folgendes geschrieben:
Nur wie berechne ich die Anzahl für die nächsten Maxima ? Ich sehe auf dem Bild das links und rechts jeweils 3 Maxima erkennbar sind, nur weiß ich nicht wie sowas berechnet wird.

Bei deinem Ansatz komme ich irgendwie nicht weiter oder verstehe ich etwas falsch ?

Ich nehme an, dass es jeweils 4 Maxima sein sollten.
Aus den obigen Ungleichungen folgt



Für wieviele ganzzahlige m2 ist das erfüllt für d/a=6? Wenn d/a ganzzahlig ist, kann man schliessen, dass allgemein d/a-1 Maxima im ersten Beugungsmaximum der einzelnen Spalten liegen müssen.
True
Gast





Beitrag True Verfasst am: 05. Jul 2022 16:14    Titel: Antworten mit Zitat

Myon hat Folgendes geschrieben:
True hat Folgendes geschrieben:
Nur wie berechne ich die Anzahl für die nächsten Maxima ? Ich sehe auf dem Bild das links und rechts jeweils 3 Maxima erkennbar sind, nur weiß ich nicht wie sowas berechnet wird.

Bei deinem Ansatz komme ich irgendwie nicht weiter oder verstehe ich etwas falsch ?

Ich nehme an, dass es jeweils 4 Maxima sein sollten.
Aus den obigen Ungleichungen folgt



Für wieviele ganzzahlige m2 ist das erfüllt für d/a=6? Wenn d/a ganzzahlig ist, kann man schliessen, dass allgemein d/a-1 Maxima im ersten Beugungsmaximum der einzelnen Spalten liegen müssen.


Ah alles klar jetzt verstehe deinen Ansatz, danke. Müsste man dann aber beispielsweise für die zweite Beugungsordnung 2d/3a -1 nehmen ?
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 5114

Beitrag Myon Verfasst am: 06. Jul 2022 10:04    Titel: Antworten mit Zitat

True hat Folgendes geschrieben:
Müsste man dann aber beispielsweise für die zweite Beugungsordnung 2d/3a -1 nehmen ?

Nein, wenn d/a ganzzahlig ist, sind die Zahl der Intensitätsmaxima bei jedem Maximum der Einhüllenden gleich, abgesehen vom Maximum in der Mitte. Wenn d/a nicht ganzzahlig ist, muss man für die genaue Zahl nachrechnen.
Neue Frage »
Antworten »
    Foren-Übersicht -> Optik