RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Lichtgeschwindigkeit als obere Grenze?
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Sonstiges
Autor Nachricht
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 13:20    Titel: Lichtgeschwindigkeit als obere Grenze? Antworten mit Zitat

Meine Frage:
Hallo,

es gilt die Formel:


Nun soll ich zeigen, dass "w" nicht größer als c wird, auch wenn v und u beide nahe von c sind. Ich soll hier w für kleine v bis zur vierten Ordnung entwickeln.

Meine Ideen:
Ich weiß, dass ich hier vermutlich die Geometrische Reihe anwenden kann, weiß nur nicht genau wie. Ebenso kann man hier ggf. auch die Taylorreihe anwenden, da man ja bis zur vierten Ordnung entwickeln soll.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 11990

Beitrag TomS Verfasst am: 23. Okt 2019 13:32    Titel: Antworten mit Zitat

Ich würde zunächst mal eine der beiden Geschwindigkeit festhalten und das Ergebnis durch Grenzübergang für die andere exakt zeigen.
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 14:03    Titel: Antworten mit Zitat

Ich hab jetzt, da u,v < c:


Dies hab ich nun eingesetzt und erhalte folgenden Term, weiß aber nicht, wie ich weiter vorgehen soll:


Zuletzt bearbeitet von Justin123456 am 23. Okt 2019 14:20, insgesamt einmal bearbeitet
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 11990

Beitrag TomS Verfasst am: 23. Okt 2019 14:05    Titel: Antworten mit Zitat

Der Nenner passt nicht.

Dann musst du zeigen, dass dieser Ausdruck kleiner als c ist.

Streng genommen musst du eine Geschwindigkeit u festhalten und nur für die andere v den Grenzübergang betrachten. Stell dir u und v in einem Quadrat der Seitenlänge 2c jeweils von -c bis +c vor. Dich interessiert das Verhalten innerhalb des gesamten Quadrates. Anders ausgedrückt, ist in der Aufgabe nach dem Verhalten von w(u,v) für ”u und v nahe c” oder für “u oder v nahe c“ gefragt?

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 14:25    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Der Nenner passt nicht.

Dann musst du zeigen, dass dieser Ausdruck kleiner als c ist.

Streng genommen musst du eine Geschwindigkeit u festhalten und nur für die andere v den Grenzübergang betrachten. Stell dir u und v in einem Quadrat der Seitenlänge 2c jeweils von -c bis +c vor. Dich interessiert das Verhalten innerhalb des gesamten Quadrates. Anders ausgedrückt, ist in der Aufgabe nach dem Verhalten von w(u,v) für ”u und v nahe c” oder für “u oder v nahe c“ gefragt?


Tut mir leid, aber ich kann das mit dem Grenzwert nicht ganz nachvollziehen.
1. Wieso machen wir das, also welche Funktion erfüllt das hier?
2. Wie macht man das?

PS: Den Nenner habe ich jetzt korrigiert, sollte nun passen, hat sich im Editor wohl ein Tippfehler eingeschlichen ^^
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 14:36    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Der Nenner passt nicht.

Dann musst du zeigen, dass dieser Ausdruck kleiner als c ist.

Streng genommen musst du eine Geschwindigkeit u festhalten und nur für die andere v den Grenzübergang betrachten. Stell dir u und v in einem Quadrat der Seitenlänge 2c jeweils von -c bis +c vor. Dich interessiert das Verhalten innerhalb des gesamten Quadrates. Anders ausgedrückt, ist in der Aufgabe nach dem Verhalten von w(u,v) für ”u und v nahe c” oder für “u oder v nahe c“ gefragt?

Das Verhalten von u und v.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 11990

Beitrag TomS Verfasst am: 23. Okt 2019 14:59    Titel: Antworten mit Zitat

Kannst du mal den präzisen Text der Aufgabe vollständig hier reinstellen?

Ansonsten: Gegeben ist eine Funktion



Zu zeigen ist, dass



auf dem gesamten Definitionsbereich.

Bei dem “oder” gilt z.B.



d.h. du betrachtest eine Kante des Quadrats.

Bei dem “und” gilt,



d.h. du betrachtest eine Ecke des Quadrats.

Sinnvollerweise betrachtet man das Quadrat als Ganzes, ein Grenzübergang ist nicht notwendig.

Konkret musst du also zeigen, dass



wobei du nun die explizite Formel für w(u,v) einsetzt und dann den dich interessierenden Fall betrachtest: Kante, Ecke, das Innere, das gesamte Quadrat inklusive Berandung = Ecken und Kanten.

Wenn du dich auf das “und” festlegst, gehen sowohl |u| als auch |v| gegen c. Wenn du nun zusätzlich für beide das selbe epsilon ansetzt, gehen sogar beide gleichartig gegen |c|, nämlich auf einer Diagonalen des Quadrates; das ist dann der Spezialfall des Spezialfalls.

Wenn dich eine Kante interessiert, dann betrachtest du z.B.



Wenn dich eine Ecke interessiert, dann betrachtest du z.B.


_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 3020

Beitrag Myon Verfasst am: 23. Okt 2019 17:00    Titel: Antworten mit Zitat

Man kann auch durch einfaches Umformen etc. zeigen, dass für alle gilt



(Sorry, ein banaler, redundander Kommentar).
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 19:58    Titel: Antworten mit Zitat

Myon hat Folgendes geschrieben:
Man kann auch durch einfaches Umformen etc. zeigen, dass für alle gilt



(Sorry, ein banaler, redundander Kommentar).

Wie genau sind Sie auf diese Umformung gekommen?
jh8979
Moderator


Anmeldungsdatum: 10.07.2012
Beiträge: 7899

Beitrag jh8979 Verfasst am: 23. Okt 2019 20:37    Titel: Antworten mit Zitat

Myon hat Folgendes geschrieben:
Man kann auch durch einfaches Umformen etc. zeigen, dass für alle gilt

(Sorry, ein banaler, redundander Kommentar).

Ich finde diese Abschätzung übrigens gar nicht trivial. Na klar ist das < Zeichen richtig, wir wissen ja, dass w<c gilt. Aber dass ist ja erst zu zeigen und dass w immer kleiner ist, als wenn man fuer u=c einsetzt finde ich mathematisch nicht offensichtlich (physikalisch schon).


Zuletzt bearbeitet von jh8979 am 23. Okt 2019 21:17, insgesamt einmal bearbeitet
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 20:44    Titel: Antworten mit Zitat

Wie genau soll man das denn nun beweisen? Ich weiß es gerade gar nicht so recht.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 3020

Beitrag Myon Verfasst am: 23. Okt 2019 21:14    Titel: Antworten mit Zitat

Ich habe nicht gesagt, dass die Ungleichung trivial sei, und natürlich muss man es zeigen. Wahrscheinlich gibt es schönere Wege, aber man könnte so beginnen:

Seien u, v reell mit . Dann gilt









Die letzte Ungleichung zu zeigen sollte nicht so schwierig sein.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 21:20    Titel: Antworten mit Zitat

Deine Ungleichungsschritte sind für mich alle nachvollziehbar, danke nochmal, dass du dies so kleinschrittig gemacht hast. Kann man durch deine Ungleichung denn wirklich zeigen, dass u,v < c?
jh8979
Moderator


Anmeldungsdatum: 10.07.2012
Beiträge: 7899

Beitrag jh8979 Verfasst am: 23. Okt 2019 21:21    Titel: Antworten mit Zitat

Myon hat Folgendes geschrieben:


Die letzte Ungleichung zu zeigen sollte nicht so schwierig sein.

Sollte nicht... sie stimmt ja offensichtlich... aber banal wie Du oben schriebst, finde ich dass nicht...
Gast002
Gast





Beitrag Gast002 Verfasst am: 23. Okt 2019 21:23    Titel: Antworten mit Zitat

Hallo,

ich sehe die Ungleichung von myon durchaus nicht als als eine Trivialität, die man auf den ersten Blick erkennen sollte, sondern als einen Lösungsansatz, der viel eleganter ist, als eine 2-dimensionale Reihenentwicklung.
Freilich muß man die Richtigkeit der Ungleichung beweisen, z. B. indem man mit den Nennern multipliziert und dann weiter umformt.

Beste Grüße
jh8979
Moderator


Anmeldungsdatum: 10.07.2012
Beiträge: 7899

Beitrag jh8979 Verfasst am: 23. Okt 2019 21:26    Titel: Antworten mit Zitat

Myon hat Folgendes geschrieben:
Ich habe nicht gesagt, dass die Ungleichung trivial sei,.

Ich wollte mit meinem Kommentar auch nur deutlich machen, dass Deine Antwort oben nicht banal und redundant ist, wie Du anmerkst.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 3020

Beitrag Myon Verfasst am: 23. Okt 2019 21:26    Titel: Antworten mit Zitat

Mit banal meinte ich meinen Beitrag, im Vergleich zu dem sicher viel fundierteren, vorhergehenden Text von TomS.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 3020

Beitrag Myon Verfasst am: 23. Okt 2019 21:32    Titel: Antworten mit Zitat

Justin123456 hat Folgendes geschrieben:
Kann man durch deine Ungleichung denn wirklich zeigen, dass u,v < c?

Dass ist nicht zu zeigen, sondern das wird vorausgesetzt. Wenn daraus die letzte Ungleichung folgt, gilt auch w<c.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 21:33    Titel: Antworten mit Zitat

Myon hat Folgendes geschrieben:
Ich habe nicht gesagt, dass die Ungleichung trivial sei, und natürlich muss man es zeigen. Wahrscheinlich gibt es schönere Wege, aber man könnte so beginnen:

Seien u, v reell mit . Dann gilt









Die letzte Ungleichung zu zeigen sollte nicht so schwierig sein.


Wieso genau hast du c=u gesetzt, unter der Annahme, dass u etwa c entspricht?
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 3020

Beitrag Myon Verfasst am: 23. Okt 2019 21:37    Titel: Antworten mit Zitat

Es wurde nirgends u=c gesetzt. Die Aussagen gelten für alle positiven Zahlen u, v, c. Für die letzte Ungleichung dann ist hinreichend, wenn zusätzlich gilt u, v < c.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 21:40    Titel: Antworten mit Zitat

Myon hat Folgendes geschrieben:
Es wurde nirgends u=c gesetzt. Die Aussagen gelten für alle positiven Zahlen u, v, c. Für die letzte Ungleichung dann ist hinreichend, wenn zusätzlich gilt u, v < c.


Die "rechte Ungleichung" entspricht der linken Ungleichung, nur dass statt u nun c ist.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 3020

Beitrag Myon Verfasst am: 23. Okt 2019 22:31    Titel: Antworten mit Zitat

Ich verstehe nicht ganz, was Du meinst. Die erste Ungleichung soll man zeigen, bzw. wenn man die zeigt, hat man gezeigt, dass w<c ist.
“ heisst „gilt genau dann, wenn gilt“. Die erste Ungleichung ist also äquivalent zur letzten Ungleichung. Es genügt somit zu zeigen, dass diese gilt für u, v < c.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 23. Okt 2019 22:57    Titel: Antworten mit Zitat

Nun muss ich w für kleine v bis zur vierten Ordnung in v entwickeln. Wie genau beginnt man dort? Mir fällt jetzt spontan nur die Taylor-Reihe ein?
VeryApe



Anmeldungsdatum: 10.02.2008
Beiträge: 3178
Wohnort: Austria - Wiener Neustadt

Beitrag VeryApe Verfasst am: 23. Okt 2019 23:55    Titel: Antworten mit Zitat

wieso kann man das nicht einfach so machen?









->









Die ungleichung ist für alle x<1 und y<1 und x>=0 und y>=0 erfüllt

_________________
Prof Dr Heiner Flassbeck - Wirtschaftsforscher -
WAS IST LOS IN EUROPA? https://www.youtube.com/watch?v=a9mduhSSC5w
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 11990

Beitrag TomS Verfasst am: 24. Okt 2019 00:46    Titel: Antworten mit Zitat

VeryApe hat Folgendes geschrieben:
wieso kann man das nicht einfach so machen?

...

Weiß nicht.

Ba ja, ein paar Sonderfälle muss man betrachten, z.B. die Nullstellen des Nenners.

Zu Beginn wurde gesagt, ...
Justin123456 hat Folgendes geschrieben:
... ich soll zeigen, dass "w" nicht größer als c wird, auch wenn v und u beide nahe von c sind. Ich soll hier w für kleine v bis zur vierten Ordnung entwickeln.

Ich habe das kommentiert sowie darauf hingewiesen
TomS hat Folgendes geschrieben:
... kannst du mal den präzisen Text der Aufgabe vollständig hier reinstellen?

... ein Grenzübergang ist nicht notwendig.

Dazu kam nichts mehr.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 24. Okt 2019 14:56    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
VeryApe hat Folgendes geschrieben:
wieso kann man das nicht einfach so machen?

...

Weiß nicht.

Ba ja, ein paar Sonderfälle muss man betrachten, z.B. die Nullstellen des Nenners.

Zu Beginn wurde gesagt, ...
Justin123456 hat Folgendes geschrieben:
... ich soll zeigen, dass "w" nicht größer als c wird, auch wenn v und u beide nahe von c sind. Ich soll hier w für kleine v bis zur vierten Ordnung entwickeln.

Ich habe das kommentiert sowie darauf hingewiesen
TomS hat Folgendes geschrieben:
... kannst du mal den präzisen Text der Aufgabe vollständig hier reinstellen?

... ein Grenzübergang ist nicht notwendig.

Dazu kam nichts mehr.


Die Aufgabenstellung lautet: Zeigen Sie, dass w (s. oben) niemals größer als c wird, selbst wenn v und c sehr nahe von c gewählt werden. Entwickeln Sie w für kleine v bis zur vierten Ordnung in v.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 11990

Beitrag TomS Verfasst am: 24. Okt 2019 18:06    Titel: Antworten mit Zitat

Justin123456 hat Folgendes geschrieben:
Die Aufgabenstellung lautet: Zeigen Sie, dass w (s. oben) niemals größer als c wird, selbst wenn v und c sehr nahe von c gewählt werden. Entwickeln Sie w für kleine v bis zur vierten Ordnung in v.

Ich denke, du meinst:
Zeigen Sie, dass w (s. oben) niemals größer als c wird, selbst wenn u und v sehr nahe von c gewählt werden. Entwickeln Sie w für kleine v bis zur vierten Ordnung in v.

Warum jetzt einerseits u und v nahe bei c sein sollen, andererseits jedoch v um Null entwickelt werden soll, erschließt sich mir nicht.

Zur Berechnung:

Wenn du das so lösen willst wie in der Aufgaben angegeben, dann musst du die Taylorreihe in v um v=0 aufstellen und anschließend u nahe 1 betrachten.

Wenn du etwas sinnvolles berechnen willst, dann z.B. die Taylorreihe für festes u um v=1.

Außerdem: einfach den folgenden Link die die Adresszeile kopieren (die alte Foren-SW kann das nicht)

https://www.wolframalpha.com/input/?i=plot+%28u%2Bv%29%2F%281%2Bu*v%29%2C+u%3D-1..1%2C+v%3D-1..1

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Justin123456



Anmeldungsdatum: 20.10.2019
Beiträge: 33

Beitrag Justin123456 Verfasst am: 27. Okt 2019 16:22    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Justin123456 hat Folgendes geschrieben:
Die Aufgabenstellung lautet: Zeigen Sie, dass w (s. oben) niemals größer als c wird, selbst wenn v und c sehr nahe von c gewählt werden. Entwickeln Sie w für kleine v bis zur vierten Ordnung in v.

Ich denke, du meinst:
Zeigen Sie, dass w (s. oben) niemals größer als c wird, selbst wenn u und v sehr nahe von c gewählt werden. Entwickeln Sie w für kleine v bis zur vierten Ordnung in v.

Warum jetzt einerseits u und v nahe bei c sein sollen, andererseits jedoch v um Null entwickelt werden soll, erschließt sich mir nicht.

Zur Berechnung:

Wenn du das so lösen willst wie in der Aufgaben angegeben, dann musst du die Taylorreihe in v um v=0 aufstellen und anschließend u nahe 1 betrachten.

Wenn du etwas sinnvolles berechnen willst, dann z.B. die Taylorreihe für festes u um v=1.

Außerdem: einfach den folgenden Link die die Adresszeile kopieren (die alte Foren-SW kann das nicht)

https://www.wolframalpha.com/input/?i=plot+%28u%2Bv%29%2F%281%2Bu*v%29%2C+u%3D-1..1%2C+v%3D-1..1


Zunächst vielen Dank für deine schnelle Rückmeldung,

wie genau soll man die Taylorreihe für v=0 aufstellen? Man betrachtet v dann hier als x, sollen dann die Konstanten wie "u" und "c" wegfallen? Also wie folgt:
w= x/(1+x)? Und dies dann entsprechend ableiten?
Qubit



Anmeldungsdatum: 17.10.2019
Beiträge: 94

Beitrag Qubit Verfasst am: 27. Okt 2019 22:23    Titel: Antworten mit Zitat

VeryApe hat Folgendes geschrieben:



Die ungleichung ist für alle x<1 und y<1 und x>=0 und y>=0 erfüllt


Genaugenommen, gilt die Ungleichung für
bei



und nicht bei

TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 11990

Beitrag TomS Verfasst am: 27. Okt 2019 23:42    Titel: Antworten mit Zitat

Justin123456 hat Folgendes geschrieben:
... wie genau soll man die Taylorreihe für v=0 aufstellen?

Du setzt





und berechnest für



die Taylorentwicklung um y = 0



Der tiefgestellt Index steht für die Ableitung.

Aber nochmal: mir kommt die Aufgabenstellung aus mehreren Gründen seltsam vor; befasse dich auch mal mit den Alternativen: u) man kann das exakt lösen; ii) das „und“ erscheint mir seltsam.

Gruß
Thomas

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.


Zuletzt bearbeitet von TomS am 28. Okt 2019 07:33, insgesamt 2-mal bearbeitet
VeryApe



Anmeldungsdatum: 10.02.2008
Beiträge: 3178
Wohnort: Austria - Wiener Neustadt

Beitrag VeryApe Verfasst am: 28. Okt 2019 03:23    Titel: Antworten mit Zitat

qubit hat Folgendes geschrieben:
und nicht bei



ich bin da immer vorsichtig bei Ungleichungen mit gilt und erfüllt.

Ich multipliziere ja beide Seiten mit 1+x*y

Wenn 1+x*y<0 dann Multiplikation mit negativen Wert dreht das größer kleiner Zeichen um dann wird die Ungleichung zu

x+y>1+x*y für (1+x*y<0)

x+y<1+x*y für (1+x*y>0)

ob wo sie mit den Zahlenwerten erfüllt ist, ist dann wieder ne andere Geschichte, man müsste bei negativen x oder y Wertenaich noch kontrollieren ob w>-c ist.

wenn 1+x*y=0 dann hab ich in der Ursprungsgleichung division by zero.

Ich habe kurz den Bereich x,y >=0 und <1 betrachtet. da gilt die Ungleichung und erfüllt ist sie auch.

_________________
Prof Dr Heiner Flassbeck - Wirtschaftsforscher -
WAS IST LOS IN EUROPA? https://www.youtube.com/watch?v=a9mduhSSC5w
Jh23789
Gast





Beitrag Jh23789 Verfasst am: 28. Okt 2019 15:39    Titel: Antworten mit Zitat

TomS hat Folgendes geschrieben:
Justin123456 hat Folgendes geschrieben:
... wie genau soll man die Taylorreihe für v=0 aufstellen?

Du setzt





und berechnest für



die Taylorentwicklung um y = 0



Der tiefgestellt Index steht für die Ableitung.

Aber nochmal: mir kommt die Aufgabenstellung aus mehreren Gründen seltsam vor; befasse dich auch mal mit den Alternativen: u) man kann das exakt lösen; ii) das „und“ erscheint mir seltsam.

Gruß
Thomas

Ich komme nicht auf die Taylorreihe und wenn dann ist diese nicht plausibel
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 11990

Beitrag TomS Verfasst am: 28. Okt 2019 16:13    Titel: Antworten mit Zitat

Was ist denn dein Problem bzgl. der Taylorreihe? Kannst du mal deinen Ansatz hier einstellen?
_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Neue Frage »
Antworten »
    Foren-Übersicht -> Sonstiges