RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Energie eines Wasserpendels
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
felipe_luis



Anmeldungsdatum: 16.11.2023
Beiträge: 2

Beitrag felipe_luis Verfasst am: 16. Nov 2023 12:15    Titel: Energie eines Wasserpendels Antworten mit Zitat

Meine Frage:
Wie kann man die Energie eines Wasserpendels so beschreiben, dass die Summe der Spann- und kinetischen Energie genau null ergeben.

Meine Ideen:
Bei harmonischen mechanischen Schwingungen gilt ja allgemein der Energieerhaltungssatz. So hat man beim Federpendel z.B:

Eges = Espann + Ekin = 1/2*D*x^2 + 1/2^m*v^2 = 1

x und x? kann man ja mithilfe der Lösungen der DGL bestimmen, also die Bewegungsgleichungen.

Diese sind ja immer trigonometrisch, bei der Spannenergie macht der Cosinus Sinn und bei der kinetischen Energie der Sinus.
Durch den trigonometrischen Pythagoras erhält man ja:

sin(x)^2 + cos(x)^2 = 1, also ein schönes Diagramm, in der die Summe der beiden Energien immer 1 ergeben.

Nun frage ich mich allerdings, wie das mit der Energie jetzt beim Wasserpendel aussieht. Auf der einen Seite habe ich ja die Lageenergie und auf der anderen Seite die kinetische Energie.

Da bei der Lageenergie aber ja kein Quadrat drin steckt, erreiche ich mit meinem Ansatz vom trigonometrischen Phytagoras ja nicht ein solches Diagramm wie beim Federpendel.

Kann mir da jemand weiterhelfen, bitte.
Myon



Anmeldungsdatum: 04.12.2013
Beiträge: 5802

Beitrag Myon Verfasst am: 16. Nov 2023 13:38    Titel: Antworten mit Zitat

Die potentielle Energie eines Körpers mit konstanter Masse ändert sich linear mit der Höhe seines Schwerpunkts. Bei einer Wassersäule ändern sich aber der Schwerpunkt (halbe Höhe der Wassersäule) und die Masse mit der Höhe, das ergibt insgesamt eine quadratische Abhänggkeit der potentiellen Energie von h.

Rechnerisch: Mit Höhe h, Dichte rho, Grundfläche A



Ebenso ist bei einem Wasserpendel die potentielle Energie proportional zur Höhendifferenz im Quadrat. Die rückttreibende Kraft ist proportional zur Höhendifferenz, es resultiert eine harmonische Schwingung.
felipe_luis



Anmeldungsdatum: 16.11.2023
Beiträge: 2

Beitrag felipe_luis Verfasst am: 20. Dez 2023 14:22    Titel: Antworten mit Zitat

hi muon, danke für deine antwort. leider verstehe ich noch nicht, wieso es eine quadratische abhängigkeit der höhe benötigt, bzw. man hierbei ein integral braucht.
[/b]
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 17763

Beitrag TomS Verfasst am: 20. Dez 2023 20:05    Titel: Antworten mit Zitat

Die potentielle Energie einer infinitesimalen Masse m auf der Höhe h beträgt.



dabei ist



dV ist das Volumenelement der Masse, dA das horizontale Flächenelement, dh die infinitesimale Höhe.

Für eine Wassersäule gilt also



Bei konstanter Querschnittsfläche A folgt



Das liefert eine quadratische Abhängigkeit von der Höhe.

Nun betrachtet man zwei verbundene Wassersäulen und deren Höhen



die um die Ruhelage schwanken. Die gesamte potentielle Energie entspricht der Summe der beiden einzelnen Beiträge.

y(t) ist die dynamische Variable.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Aruna_Gast
Gast





Beitrag Aruna_Gast Verfasst am: 21. Dez 2023 10:25    Titel: Antworten mit Zitat

felipe_luis hat Folgendes geschrieben:
hi muon, danke für deine antwort. leider verstehe ich noch nicht, wieso es eine quadratische abhängigkeit der höhe benötigt, bzw. man hierbei ein integral braucht.
[/b]


Siehe Beitrag von Myon:
Ein h um das Volumen und damit die Masse zu berechnen.
Ein (halbes) h für die Höhe des Schwerpunkts.
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik