RegistrierenRegistrieren   LoginLogin   FAQFAQ    SuchenSuchen   
Pendel mit Dämpfung
 
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik
Autor Nachricht
DarkCisum



Anmeldungsdatum: 07.04.2010
Beiträge: 9

Beitrag DarkCisum Verfasst am: 22. Apr 2010 12:59    Titel: Pendel mit Dämpfung Antworten mit Zitat

Hallo Zusammen,

Nun ich habe schon viele Beiträge über Pendel gfunde, jedoch half mir keines wirklich weiter, vielleicht weil ich kein riesiges Mathe-/Physikgenie bin. :-)
Ich möchte ein Pendel simulieren und dies soll eine Dämpfung haben.
Mein Problem ist nun wie ich nun den Winkel mit Dämpfung erhalte.

Ich habe schon weit herum gesucht und bin nun noch auf den Ansatz:


Ein wenig allgemeiner:


Nun gut wie gesagt das hab ich irgendwo gefunden und kann auch kreuz falsch sein.

Das Prinzip mit den Kräften ist mir ziemlich klar, jedoch find ich keine Lösung, wie ich dann an den Winkel komme.

Was ich also suche ist: Eine Formel, welche mir den Winkel mit der resultierenden Kraft verbindet. Hat da jemand neh Lösung?

Danke im Voraus.

Ich habe auch bereits den Beitrag http://www.physikerboard.de/lhtopic,13712,0,asc,pendel+d%E4mpfung,0.html gesehen jedoch verstehe ich dort die eFormel nicht.

mfg DC

PS: Wie ich diese zwei Integrale lösen sollte, ist mir auch noch ein Rätsel...
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6979
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Apr 2010 15:37    Titel: Antworten mit Zitat

Leider kann ich nicht erkennen, was du wirklich suchst und was die Variablen bedeuten. Du suchst einen Winkel - der Winkel des Pendels ändert sich mit der Zeit. Also welchen konkreten Winkel suchst du nun? Und was meinst du mit resultierender Kraft?

grübelnd

_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
DarkCisum



Anmeldungsdatum: 07.04.2010
Beiträge: 9

Beitrag DarkCisum Verfasst am: 22. Apr 2010 16:55    Titel: Antworten mit Zitat

schnudl hat Folgendes geschrieben:
Leider kann ich nicht erkennen, was du wirklich suchst und was die Variablen bedeuten. Du suchst einen Winkel - der Winkel des Pendels ändert sich mit der Zeit. Also welchen konkreten Winkel suchst du nun? Und was meinst du mit resultierender Kraft?


Sry war wohl zu Tief im Thema drin. :-D

Naja es handelt sich um ein schöns Pendel, à la:
http://upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Fadenpendel.png/273px-Fadenpendel.png

Obwohl auf dem Bild nun nicht alles "richtig" gekenn zeichnet ist.





Ich möchte das Pendel am PC simulieren und somit auch numerische Lösungen verwenden, falls keine analytischen vorliegen...

Was ich schlussendlich suche ist die Parameter Form für und . Jedoch kann ich auch schon viel damit anfangen, wenn ich weiss, wie man von den Kräften zum Auslenkungswinkel komme.

Weitere Lösungsansätze:

Wie im verlinkten Beitrag, hab ich selbige Formel auch hier gefunden (S49):
http://www.mustun.ch/andrew/archives/uni/ph/uni_ph_formulary.pdf
Jedoch werde isch immer noch nicht viel schlauer daraus.

Ich erkenn zwar einige Formeln jedoch weiss ich nicht was mit anzufangen ist...

mfg DC
schnudl
Moderator


Anmeldungsdatum: 15.11.2005
Beiträge: 6979
Wohnort: Wien

Beitrag schnudl Verfasst am: 22. Apr 2010 20:02    Titel: Antworten mit Zitat

Für hinreichend kleine Winkel kannst du die Bewegungsgleichung exakt lösen. Für Winkel die grösser sind bleibt dir eine numerische Lösung der zugrundeliegenden Differenzialgleichung nicht erspart.
_________________
Wenn du eine weise Antwort verlangst, musst du vernünftig fragen (Goethe)
DarkCisum



Anmeldungsdatum: 07.04.2010
Beiträge: 9

Beitrag DarkCisum Verfasst am: 24. Apr 2010 18:27    Titel: Antworten mit Zitat

schnudl hat Folgendes geschrieben:
Für hinreichend kleine Winkel kannst du die Bewegungsgleichung exakt lösen. Für Winkel die grösser sind bleibt dir eine numerische Lösung der zugrundeliegenden Differenzialgleichung nicht erspart.


Okay.
Nun wie gesagt ich bin kein Mathe/Physikgenie und verstehe darum nicht wirklich wie das denn zu lösen sei...
Kann mir da jemand helfen?

mfg DC
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 18110

Beitrag TomS Verfasst am: 24. Apr 2010 21:29    Titel: Antworten mit Zitat

Zunächst sortieren wir mal die Gleichungen etwas:

Die Rückstellkraft soll proportional zur Auslenkung des Pendels aus der Ruhelage sein. Diese Kraft hast du oben angegeben mit



Die Zentrifugalkraft, die die Fadenspannung o.ä. verursacht, musst du nicht berücksichtigen; sie wirkt nicht in die Bewegungsrichtung (diese verläuft tangential zu dem gedachten Kreis), sondern senkrecht dazu (also radial). Damit wirkt sie weder beschleunigend noch bremsend.

Die Subtraktion dieser beiden Kräfte ist falsch; bei Kräften handelt es sich immer um Vektoren, d.h. sie haben eine Richtung, und du darfst nicht einfach etwas, das in eine Richtung wirkt, von etwas subtrahieren, was in eine andere Richtung wirkt. Aber, wie gesagt, die Zentrifugalkraft spielt hier keine Rolle.

Gleichzeitig gilt aber auch



Die Beschleunigung ist die erste Ableitung (Änderung) der Geschwindigkeit, d.h. die zweite Ableitung (Änderung) des Ortes. Die Länge wird entlang des Kreises gemessen, also





Gleichsetzen liefert die Differentialgleichung



Diese ist in dieser Form nicht geschlossen lösbar; allerdings kann man den Sinus für kleine Winkel in eine Taylorreihe entwickeln und nur den ersten (linearen) Term behalten. Dies liefert



Man definiert nun



mit



Zwei Lösungen dieser Gleichung lauten



_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.


Zuletzt bearbeitet von TomS am 24. Apr 2010 23:25, insgesamt einmal bearbeitet
DarkCisum



Anmeldungsdatum: 07.04.2010
Beiträge: 9

Beitrag DarkCisum Verfasst am: 24. Apr 2010 23:04    Titel: Antworten mit Zitat

Danke für deine Antwort und herleitung des Pendels ohne Reibungswiderstand.
Leider suche ich Formel für die Berechnung mit Reibungswiderstand.

TomS hat Folgendes geschrieben:
Die Zentrifugalkraft, die die Fadenspannung o.ä. verursacht, musst du nicht berücksichtigen; sie wirkt nicht in die Bewegungsrichtung (diese verläuft tangential zu dem gedachten Kreis), sondern senkrecht dazu (also radial). Damit wirkt sie weder beschleunigend noch bremsend.


Da musst du wohl etwas mit den Kräften durcheinander gekommen sein. Zentrifugalkraft erwähnte ich gar nie...
Ganz korrekt wäre das glaub ich sowie so die Zentripedalkraft...

TomS hat Folgendes geschrieben:
Die Subtraktion dieser beiden Kräfte ist falsch; bei Kräften handelt es sich immer um Vektoren, d.h. sie haben eine Richtung, und du darfst nicht einfach etwas, das in eine Richtung wirkt, von etwas subtrahieren, was in eine andere Richtung wirkt. Aber, wie gesagt, die Zentrifugalkraft spielt hier keine Rolle.


Ja da muss ich dir zustimmen, nur leider hab ich keine Vektoren mit X/Y-Komponenten, sondern nur deren Betrag. Was ich nun nach meiner Meinung aber machen kann, ist die Komponenten des Betrags beider Kräfte zu berechnen und mit denen dann nach dem 3. Newteschon Axinom addieren (oder subtrahieren).

Gibt es dann keine numerische Lösung für das Problem?
Noch einmal kurz die wirkenden Kräft:


Unter dem geposteten Link findet sich die Formel:


Könnte das meine "Lösung" sein?

mfg DC
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 18110

Beitrag TomS Verfasst am: 24. Apr 2010 23:17    Titel: Antworten mit Zitat

DarkCisum hat Folgendes geschrieben:
Da musst du wohl etwas mit den Kräften durcheinander gekommen sein. Zentrifugalkraft erwähnte ich gar nie...

Korrekt, irgendwas hat mit verwirrt.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 18110

Beitrag TomS Verfasst am: 24. Apr 2010 23:20    Titel: Antworten mit Zitat

DarkCisum hat Folgendes geschrieben:
Leider suche ich Formel für die Berechnung mit Reibungswiderstand.


Dazu musst du "nur" die Bewegungsgleichung um einen Reibungsterm ergänzen



Kann es sein, dass dein Reibungsterm in dem mit steckt?

Die Lösung für die harmonische Schwingung mit Reibung erfolgt ganz analog. Man erhält tatsächlich einen Term mit einer (dämpfenden) Exponentialfunktion multipliziert mit einem Schwingungsterm, so wie in deiner letzten Formel.

Am besten verwendet man allerdings zur Berechnung eine komplexe e-Funktion, die man erst ganz zuletzt in eine reelle e-Funktion mal einer Sinus- bzw. Cosinus-Funktion zerlegt.

_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
DarkCisum



Anmeldungsdatum: 07.04.2010
Beiträge: 9

Beitrag DarkCisum Verfasst am: 24. Apr 2010 23:55    Titel: Antworten mit Zitat

Danke für die Hilfe!

TomS hat Folgendes geschrieben:
Kann es sein, dass dein Reibungsterm in dem mit steckt?

Ja das ist gut möglich...

Zitat:
Die Lösung für die harmonische Schwingung mit Reibung erfolgt ganz analog. Man erhält tatsächlich einen Term mit einer (dämpfenden) Exponentialfunktion multipliziert mit einem Schwingungsterm, so wie in deiner letzten Formel.


Kann ich also in diese Formel alle Vorgaben eingeben und erhalte denn den Auslenkungswinkel?

Zitat:
Am besten verwendet man allerdings zur Berechnung eine komplexe e-Funktion, die man erst ganz zuletzt in eine reelle e-Funktion mal einer Sinus- bzw. Cosinus-Funktion zerlegt.


grübelnd grübelnd grübelnd grübelnd
Hab noch nie mit Komplexenzahlen gerechnet... :-S

Ausserdem verstehe ich das mit dem e^was nicht ganz, ist das e = Eulerischezahl? Muss ich da noch was rumbasteln?

mfg DC
TomS
Moderator


Anmeldungsdatum: 20.03.2009
Beiträge: 18110

Beitrag TomS Verfasst am: 25. Apr 2010 01:14    Titel: Antworten mit Zitat

Ich zeige dir nochmal, wie die Herleitung funktioniert; ganz zum Schluss wirst du sehen, dass man eine Gleichung erhält, für die nicht unter allen Umständen eine Lösung existiert.

Dein Ansatz lautet allgemein



Diesen können wir der Übersichtlichkeit halber vereinfachen zu



Wir berechnen die Ableitungen





Diese setzen wir in die Differentialgleichung



ein, kürzen die e-Funktion und sortieren nach Termen mit Sinus und Kosinus. Das ergibt



Die Terme für Sinus und Kosinus müssen einzeln verschwinden, d.h. man erhält die beiden Gleichungen




Aus der zweiten Gleichung bestimmt man



setzt dies in die erste Gleichung ein und löst auf



Damit hat man die zunächst unbekannten Konstanten und durch die in der urspünglich gegebenen Konstanten und ausgedrückt.

Die letzte Gleichung ist aber (zunächst) nur lösbar, wenn



Falls dies nicht erfüllt ist, erhält man zwei rein imaginäre Lösungen; dies führt dazu, dass aus dem (oszillierenden) Sinus eine rein exponentiell gedämpfte, nicht mehr oszillierende Lösung wird. Dazu benötigt man einen anderen Ansatz, nämlich vollständig ohne oszillierenden Sinus ausschließlich mit einer gedämpften e-Funktion - oder eben eine komplexe e-Funktion. Letztere hat den Vorteil, dass man mit einem Ansatz alle Fälle einheitlich benhandeln kann, setzt aber eben mehr mathematisches Grundwissen voraus.

D.h. dass der hier verwendete Ansatz nur einen Teil der Lösungsmenge repräsentiert, nämlich den für schwache Dämpfung



Im Grenzfall



mit

kann man den o.g. Ansatz verwenden; dazu benötigen wir jedoch wieder die zuerst genannte allgemeine Form


_________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Neue Frage »
Antworten »
    Foren-Übersicht -> Mechanik