$2^{\text {nd }}$ Assignment PH-104 Part B

Part B.a

The satellite stays in his orbit if there is a balance of forces. We assume that $y \in(0,1)$ and $M_{P}:=M_{S}$

$$
\begin{equation*}
F_{c f}=F_{G, M_{S}}-F_{G, M_{P}} \text { with centrifugal force } F_{c f}=m \omega^{2} y R \tag{1}
\end{equation*}
$$

Part B.b

$$
\begin{array}{cc}
F_{c f} & =F_{G, M_{S}}-F_{G, M_{P}} \\
\Leftrightarrow 0 & =F_{c f}+F_{G, M_{P}}-F_{G, M_{S}} \\
\Leftrightarrow 0 & =G^{-1} \omega^{2} y R+\frac{M_{P}}{(1-y)^{2} R^{2}}-\frac{M_{S}}{y^{2} R^{2}} \\
\Leftrightarrow 0 & =G^{-1} \frac{4 \pi^{2}}{T^{2}} y R+\frac{M_{P}}{(1-y)^{2} R^{2}}-\frac{M_{S}}{y^{2} R^{2}} \\
\Leftrightarrow 0 & \underbrace{=} \quad y\left(M_{S}+M_{P}\right)+\frac{M_{P}}{(1-y)^{2}}-\frac{M_{S}}{y^{2}} \\
\Leftrightarrow 0 & \underbrace{=}_{\frac{T^{2}}{R^{3}}=\frac{4 \pi^{2}}{G\left(M_{S}+M_{P}\right)}}\left(M_{S}+\eta M_{S}\right) y-\frac{M_{S}}{y^{2}}+\frac{\eta M_{S}}{(1-y)^{2}} \\
\Leftrightarrow 0 & =(1+\eta) y-\frac{1}{y^{2}}+\frac{\eta}{(1-y)^{2}} \\
\Leftrightarrow 0 & :=(1+\eta) y-\frac{1}{y^{2}}+\frac{\eta}{(1-y)^{2}} \tag{9}
\end{array}
$$

In these transformations we assumed that our parameters are non zero.

Part B.c

We consider y is slightly larger than 0 :

$$
\begin{equation*}
\lim _{y \rightarrow 0+} f(y)=\lim _{y \rightarrow 0+} \underbrace{(1+\eta) y}_{\rightarrow 0} \underbrace{-\frac{1}{y^{2}}}_{\rightarrow-\infty} \underbrace{\frac{\eta}{(1-y)^{2}}}_{\rightarrow \eta}<0 \tag{10}
\end{equation*}
$$

We consider y is slightly smaller than 1 :

$$
\begin{equation*}
\lim _{y \rightarrow 1-} f(y)=\lim _{y \rightarrow 1}-\underbrace{(1+\eta) y}_{\rightarrow(1+\eta)} \underbrace{-\frac{1}{y^{2}}}_{\rightarrow-1} \underbrace{\frac{\eta}{(1-y)^{2}}}_{\rightarrow \infty}>0 \tag{11}
\end{equation*}
$$

Since function f is a continuous function for $y \in[0+\epsilon, 1-\epsilon]$ and $\epsilon>0$ we can use the "Intermediate value theorem": $\exists \xi$ st. $f(\xi)=0$ with $\xi \in[0+\epsilon, 1-\epsilon]$.

Part B.d

We set now $\eta=0.01$:
$y \in(0,1)$
The solution for $f(y)=0$ is $y=0.85763$

$$
1.01 y-\frac{1}{y^{2}}+\frac{0.01}{(1-y)^{2}}=0
$$

Root plot

Figure 1: plot of $\mathrm{f}(\mathrm{y})$ with $\eta=0.01 y \in(0,1)$
$y>1$
For $y \in(1, \infty)$ we need to derive a new function.

$$
\begin{array}{cc}
F_{c f} & =F_{G, M_{S}}+F_{G, M_{P}} \\
\Leftrightarrow 0 & =F_{c f}-F_{G, M_{P}}-F_{G, M_{S}} \\
\Leftrightarrow 0 & =G^{-1} \omega^{2} y R-\frac{M_{P}}{(y-1)^{2} R^{2}}-\frac{M_{S}}{y^{2} R^{2}} \\
\Leftrightarrow 0 & =G^{-1} \frac{4 \pi^{2}}{T^{2}} y R-\frac{M_{P}}{(y-1)^{2} R^{2}}-\frac{M_{S}}{y^{2} R^{2}} \\
\Leftrightarrow 0 & \underbrace{=}_{\frac{4 \pi^{2}}{R^{3}}=} y\left(M_{S}+M_{P}\right)-\frac{M_{P}}{(y-1)^{2}}-\frac{M_{S}}{y^{2}} \\
\Leftrightarrow 0 & \underbrace{=}_{\frac{M_{P}}{M_{S}}=\eta}\left(M_{S}+\eta M_{S}\right) y-\frac{M_{S}}{y^{2}}-\frac{\eta M_{S}}{(y-1)^{2}} \\
\Leftrightarrow 0 & =(1+\eta) y-\frac{1}{y^{2}}-\frac{\eta}{(y-1)^{2}} \\
\Leftrightarrow f(y) & :=(1+\eta) y-\frac{1}{y^{2}}-\frac{\eta}{(y-1)^{2}}
\end{array}
$$

In these transformations we assumed that our parameters are non zero.
The solution for our new $f(y)=0$ is $y=1.15491$

$$
1.01 y-\frac{1}{y^{2}}-\frac{0.01}{(1-y)^{2}}=0
$$

Root plot

Figure 2: plot of $\mathrm{f}(\mathrm{y})$ with $\eta=0.01 y>1$
$y<0$
For $y \in(0,-\infty)$ we need to derive a new function.

$$
\begin{array}{cc}
F_{c f} & =F_{G, M_{S}}+F_{G, M_{P}} \\
\Leftrightarrow 0 & =F_{c f}-F_{G, M_{P}}-F_{G, M_{S}} \\
\Leftrightarrow 0 & =G^{-1} \omega^{2} y R-\frac{M_{P}}{(y+1)^{2} R^{2}}-\frac{M_{S}}{y^{2} R^{2}} \\
\Leftrightarrow 0 & =G^{-1} \frac{4 \pi^{2}}{T^{2}} y R-\frac{M_{P}}{(y+1)^{2} R^{2}}-\frac{M_{S}}{y^{2} R^{2}} \\
\Leftrightarrow 0 & \underbrace{=} \quad y\left(M_{S}+M_{P}\right)-\frac{M_{P}}{(y+1)^{2}}-\frac{M_{S}}{y^{2}} \\
\Leftrightarrow 0 & \underbrace{=}_{\frac{T^{2}}{R^{3}}=\frac{4 \pi^{2}}{G\left(M_{S}+M_{P}\right)}}\left(M_{S}+\eta M_{S}\right) y-\frac{M_{S}}{y^{2}}-\frac{\eta M_{S}}{(y+1)^{2}} \\
\Leftrightarrow 0 & =(1+\eta) y-\frac{1}{y^{2}}-\frac{\eta}{(y+1)^{2}} \\
\Leftrightarrow 0 & :=(1+\eta) y-\frac{1}{y^{2}}-\frac{\eta}{(y+1)^{2}} \tag{27}
\end{array}
$$

In these transformations we assumed that our parameters are non zero. The solution for our new $f(y)=0$ is $y=0.997517$

$$
1.01 y-\frac{1}{y^{2}}-\frac{0.01}{(y+1)^{2}}=0
$$

Figure 3: plot of $\mathrm{f}(\mathrm{y})$ with $\eta=0.01 y<0$

