

Eine Kugel (Radius r, Masse m) wird durch Spannen einer Feder (Federkonstante e, Spannweg Δx) horizontal beschleunigt und über eine Kurve in ihrer Bahn umgelenkt. Die Kugel verlässt die Kurve auf der Höhe h_1 unter einem Winkel von $\alpha=30^\circ$. Die Bewegungsvorgänge beim Beschleunigen und Umlenken sind reibungsfrei. Nach Verlassen der Kurve fliegt die Kugel frei auf die Rampe, wo sie an der Stelle auftrifft, an der sie nur noch eine horizontale Geschwindigkeitskomponente besitzt. Nach einer kleinen Wegstrecke Δl ist die Kugel aufgrund der Reibung auf der Rampe in eine vollständige Rollbewegung mit der Geschwindigkeit v_2 übergegangen.

- a) Welche Geschwindigkeit v_1 hat die Kugel am Ende der Kurve? (3,5 Punkte)
- b) Welche Länge l₁ muss die Rampe in Abhängigkeit von der Höhe h₁ haben, damit die Kugel beim Auftreffen nur noch eine horizontale Geschwindigkeitskomponente hat? (3 Punkte)
- c) Welche Länge l₂ muss das zusätzliche Rampenstück in Abhängigkeit der anfänglichen Rollgeschwindigkeit der Kugel v₂ mindestens haben damit die Kugel nicht über die Rampe hinausrollt? (3,5 Punkte)

Gegeben:

$$h_1,\,m,\,r,\,c=\frac{150\,m\,g}{h_1},\,\Delta x=\frac{h_1}{5},\,\alpha=30^\circ,\,\beta=60^\circ,\,\mu,\,v_2,\,J_{Kugel}=\frac{2}{5}\,m\,r^2,\,g$$