
Chapter 2

Rutherford Scattering

Let us start from the one of the first steps which was done towards understanding the deepest
structure of matter. In 1911, Rutherford discovered the nucleus by analysing the data of
Geiger and Marsden on the scattering of α-particles against a very thin foil of gold.

The data were explained by making the following assumptions.

• The atom contains a nucleus of charge Ze, where Z is the atomic number of the atom
(i.e. the number of electrons in the neutral atom),

• The nucleus can be treated as a point particle,

• The nucleus is sufficently massive compared with the mass of the incident α-particle
that the nuclear recoil may be neglected,

• That the laws of classical mechanics and electromagnetism can be applied and that no
other forces are present,

• That the collision is elastic.

If the collision between the incident particle whose kinetic energy is T and electric charge
ze (z = 2 for an α-particle), and the nucleus were head on,
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the distance of closest approach D is obtained by equating the initial kinetic energy to
the Coulomb energy at closest approach, i.e.

T =
z Z e2

4πǫ0D
,

or

D =
z Z e2

4πǫ0T

at which point the α-particle would reverse direction, i.e. the scattering angle θ would
equal π.

On the other hand, if the line of incidence of the α-particle is a distance b, from the
nucleus (b is called the “impact parameter”), then the scattering angle will be smaller.

2.1 Relation between scattering angle and an impact

parameter

The relation between b and θ is given by

tan

(

θ

2

)

=
D

2b
(2.1.1)

This relation is derived using Newton’s Second Law of Motion, Coulomb’s law for the force
between the α-particle and and nucleus, and conservation of angular momentum. The deriva-
tion is given in this section. Here we note that θ = π when b = 0 as stated above and that
as b increases the α-particle ‘glances’ the nucleus so that the scattering angle decreases.
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The initial and final momenta, p1, p2 are equal in magnitude (p) (recall, that, elastic
scattering is assumed), so that together with the momentum change q they form an isosceles
triangle with angle θ between the initial and final momenta, as shown above.

Using the sine rule we have

q

p
=

sin θ

sin
(

1

2
(π − θ)

) = 2 sin

(

θ

2

)

. (2.1.2)

The direction of the vector q is along the line joining the nucleus to the point of closest
approach of the α-particle.

We assume that the nucleus is much heavier than the α-particle so we can neglect its
recoil. We also neglect any relativistic effects.

The position of the α-particle is given in terms of two-dimensional polar coordinates r, ψ
with the nucleus as the origin and ψ = 0 chosen to be the point of closest approach.

By Newton’s second law, the rate of change of momentum in the direction of q is the
component of the force acting on the α-particle due to the electric charge of the nucleus. By
Coulomb’s law the magnitude of the force is

F =
zZe2

4πǫ0r2
,

where Z e is the electric charge of the nucleus, and z e is the electric charge of the incident
particle ( for an α-particle z = 2). Using T = zZe2

4πǫ0D
expression relating kinetic energy and

the closest approach for head-on collision, one finds

F =
TD

r2
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. The component of this force in the direction of q is

Fq(t) =
TD

r2
cosψ(t)

and, therefore, the change of momentum (Fq(t) =
dq

dt
) is given by

q =

∫

zZe2

4πǫ0r2
cosψ dt. (2.1.3)

We can replace integration over time by integration over the angle ψ using

dt =
dψ

ψ̇
,

where ψ̇ can be obtained form conservation of angular momentum,

L = mαr
2ψ̇.

The initial angular momentum is given by

L = bp,

so we have

ψ̇ =
b p

mα r2
,

so that eq.(2.1.3) becomes

q =

∫

TDmα r
2

r2 b p
cosψ dψ =

∫

Dp

2b
cosψ dψ, (2.1.4)

where kinetic energy of α-particle T = p2/(2mα) related its momenta and its mass was
substituted at the last step. Note that r2 has cancelled.

From the diagram we see that the limits on ψ are

ψ = ±
1

2
(π − θ),

so that we get

q =
Dp

2b
2sin

(

1

2
(π − θ)

)

Now using eq.(2.1.2) we get

2p sin

(

θ

2

)

=
Dp

2b
2sin

(

1

2
(π − θ)

)

from where it follows that

tan(θ/2) =
D

2b
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2.2 Flux and cross-section

The “flux”, F of incident particles is defined as the number of incident particles arriving per
unit area per second at the target.

The number of particles, dN(b), with impact parameter between b and b+ db is this flux
multiplied by the area between two concentric circles of radius b and b+ db

b

db

dN(b) = F 2πb db (2.2.5)

Differentiating eq.(2.1.1) gives us

db = −
D

4 sin2(θ/2)
dθ (2.2.6)

which allows us to write an expression for the number of α-particles scattered through an
angle between θ and θ + dθ after substitution Eq.(2.2.6) and Eq.(2.1.1) into Eq.(2.2.5):

dN(θ) = Fπ
D2

4

cos(θ/2)

sin3(θ/2)
dθ. (2.2.7)

(the minus sign has been dropped as it merely indicates that as b increases, the scattering
angle θ decreases - N(θ) must be positive).

The “differential cross-section”, dσ/dθ, with respect to the scattering angle is the number
of scatterings between θ and θ + dθ per unit flux, per unit range of angle, i.e.

dσ

dθ
=
dN(θ)

Fdθ
= π

D2

4

cos(θ/2)

sin3(θ/2)
.

It is more usual to quote the differential cross-section with respect to a given solid angle
Ω, which is related to the scattering angle θ and the azimuthal angle φ by

dΩ = sin θdθdφ = 2 sin

(

θ

2

)

cos

(

θ

2

)

dθdφ.
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The relation between the number of events, the flux, differential solid angle dΩ and differ-
ential cross section is given by

dN

dΩ
= F

dσ

dΩ

. in analogy to the relation for differential angle dθ.

The integrastion over the azimuthal angle just gives a factor of 2π so we may write

dσ

dθ
= 2π

d2σ

dθdφ

so that
d2σ

dθdφ
=

D2

8

cos(θ/2)

sin3(θ/2)
.

and substitute dθdφ by dΩ (using the above relation) to obtain

dσ

dΩ
=

D2

8

cos(θ/2)

sin3(θ/2)

1

2 sin(θ/2) cos(θ/2)
=

D2

16 sin4(θ/2)
.

Differential cross-sections have the dimension of an area. These are usually quoted in
terms of “barns”. I barn is defined to be 10−28m2, so that, for example, 1 millibarn (mb) is
an area of 10−31m2.

The unit of length that is often used in nuclear physics is the “fermi” (fm) which is
defined to be 10−15 m and energies are usually quoted in electron volts (Kev, MeV, or GeV).
A cross-section of 1 fm2 corresponds ot 10 mb. For the purposes of numerical calculations,
it is worth noting that

~ c = 197.3MeV fm,

so that
e2

4πǫ0
= α ~ c =

1

137
× 197.3MeV fm

For example, the distance of closest approach is therefore given by

D =
197.3

137

zZ

T
fm,

where the kinetic energy T is given in MeV.

2.3 Results and interpretation of the Rutherford ex-

periment

Although the differential cross-section falls rapidly with the scattering angle, the cross-section
at large angles is still much larger than would have been obtained from Thomson’s ‘current
cake’ model of the atom in which electrons are embedded in a ‘dough’ of positive charge -
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so that as the α-particle moves through the atom it suffers a large number of small-angle
scatterings in random directions.

We notice that the differential cross-section diverges as the scattering angle goes to zero.
However we note from eq.(2.1.1) that small angle scattering implies a large impact parameter.
The distance of the incident particle from any nucleus can only grow to about half of the
distance between the nuclei in the gold foil. In fact, the total number of particles scattered
into a given solid angle is the differential cross-section multiplied by the flux, multiplied by
the number of nuclei in the foil - or more precisely in the part of the foil that is ‘illuminated’
by the incident α-particles. We assume that the foil is sufficiently thin so that multiple
scatterings are very unlikely and we can make the approximation that all the nuclei lie in
a single plane. The mass of a nucleus with atomic mass number A is given to a very good
approximation by Amp, total number of nuclei per unit area of foil is given by

ρδ
1

Amp

where ρ is the density, δ is the thickness of the foil, A is the atomic mass. This means that
the fraction of α particles scattered into a small interval of solid angle dΩ is given by

δn

n
= ρδ

1

Amp

dσ

dΩ
dΩ (2.3.8)

Solid angle is defined such that an area element dA at a distance r from the scattering
centre subtends a solid angle

dΩ =
dA

r2
,

so that if we place a detector with an acceptance area dA at a distance r from the foil and at
an angle θ to the direction of the incident α-particles then the fraction of incident α-particles
enter the detector is given by replacing dΩ by dA/r2 in eq.(2.3.8)

This theoretical result compares very well with the data taken by Geiger and Marsden.
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