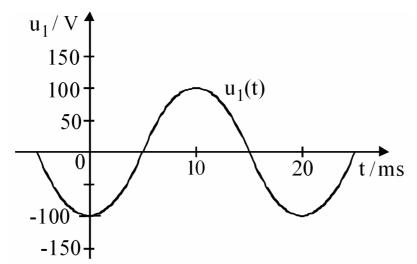
Institut für Elektrotechnik

der Montanuniversität Leoben

A-8700 Leoben Franz-Josef-Straße 18 Tel +43 3842 402-2401 Fax +43 3842 402-2402

Vorstand: O. Univ.-Prof. Dr. Helmut Weiß


Schriftliche Prüfung aus "Elektrotechnik I" 2016-03-01

Matrikel-Nummer	Name	Studien-Kennzahl

Beispiel	Punkte
1	
2	
3	
4	
5	
Summe	

Note	nterschrift

1 20 Punkte

gegeben

Der zeitliche Verlauf der Phasenspannung der Phase L₁ eines dreiphasigen, symmetrischen Verbrauchers in Sternschaltung.


In jeder der drei Phasen befindet sich ein Verbraucher mit folgender Eigenschaft: Q=-1000 VAr, 50°, kapazitiv

gesucht

- a) Das maßstäbliche Zeigerdiagramm der Phasenspannungen u₁(t), u₂(t), u₃(t), sowie der verketteten Spannungen u₁₂(t), u₂₃(t), u₃₁(t). (6 Punkte)
- b) Der zeitliche Verlauf der verketteten Spannung u₂₃(t), einzuzeichnen in der gegebenen Abbildung. (4 Punkte)
- c) Der zeitliche Verlauf des Stromes i₁(t) durch die Phase L₁ als maßstäbliche Skizze. (6 Punkte)
- d) Der Augenblickswert p(t) der Leistung in der Phase L₁ zum Zeitpunkt t=10 ms. (4 Punkte)

Hinweis: Es werden nur nachvollziehbare Ergebnisse gewertet.

2 20 Punkte

aeaeben

Synchronmaschine (SYM) in Sternschaltung: R₁ ist *nicht* vernachlässigbar

Ständerspannung: U_{verk}=660 V, eff, f=50 Hz

Ständerstrom: 64 A, eff, $\varphi_{(U_1,I_1)}=80^\circ$, induktiv

Polradspannung je Phase U_p=280 V, eff, δ=20°, generatorisch

aesucht

- a) Die Größe des ohmschen Widerstandes R_1 der Ständerwicklung, sowie der Synchronreaktanz X_d . (4 Punkte)
- b) Die Spannung \underline{U}_{R1} (Betrag, Phase) an R_1 , sowie \underline{U}_{Xd} (Betrag, Phase) an X_d . (4 Punkte) Es wird nun zu jeder Phase der SYM ein unbekanntes Element (R oder L oder C) parallel geschaltet, um auf der Netz-Seite den Leistungsfaktor $\cos \varphi$ auf 0.5, induktiv zu verbessern.
 - c) Der Strom <u>l</u>₂ durch dieses unbekannte Element, als Darstellung im Zeigerdiagramm sowie als maßstäblicher zeitlicher Verlauf, damit cosφ_(U1,I)=0.5, induktiv erreicht wird. (8 Punkte)
 - d) Die Art des unbekannten Elements (R oder L oder C) und sein Wert. (4 Punkte)

Hinweis: Es werden nur nachvollziehbare Ergebnisse gewertet.

3 20 Punkte

gegeben

Asynchronmaschine mit Kurzschlussläufer in Sternschaltung:

Werte des Ständerstromes \underline{I}_1 bei: $n=1500 \text{ min}^{-1}$: 0.87 A, $\cos \varphi = 0.25$

 $n=1200 \text{ min}^{-1}$: 12.12 Å, $\cos \phi = 0.8$

n=600 min⁻¹: 15.56 A, cosφ=0.55

 U_{verk} =693 V, f=50 Hz, p=2 (Polpaarzahl) Bei n=600 min⁻¹: M=37 Nm, P_{mech} =1800 W

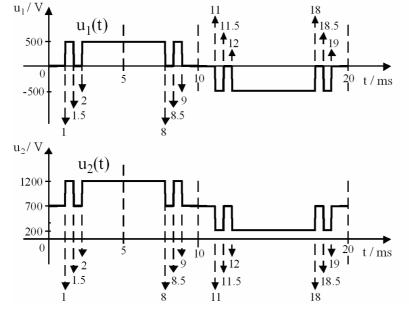
gesucht

a) Eine maßstäbliche Skizze der Ständerstrom-Ortskurve. (3 Punkte)

b) Der Ständerstrom <u>I</u>₁ (Betrag, Phase) bei s=∞. (2 Punkte)

c) Der Ständerstrom <u>I</u>₁ (Betrag, Phase) im "Kurzschlusspunkt" der ASM. (2 Punkte)

d) Der Läuferstrom <u>I</u>₂ (Betrag, Phase) bei n=1200 min⁻¹. (2 Punkte)


e) Die Kupferverluste P_{VCu1} bei n=600 min⁻¹. (3 Punkte)

f) Das motorische und generatorische Kippmoment (Vorzeichen beachten!). (6 Punkte)

g) Der maximale cosφ. (2 Punkte)

Hinweis: Es werden nur nachvollziehbare Ergebnisse gewertet.

4 20 Punkte

gegeben

Zwei pulsförmige Spannungsverläufe $u_1(t)$, $u_2(t)$

gesucht

Die Anzeigen der unten angeführten Messgeräte.

Hinweis

Der Verlauf $u_1(t)$ ist viertelwellensymmetrisch.

- a) Drehspulmessgerät mit internem, idealen Brückengleichrichter, für den Verlauf u₁(t).
 (5 Punkte)
- b) Dreheisenmessgerät, für den Verlauf u₁(t), (5 Punkte)
- c) Drehspulmessgerät mit internem, idealen Brückengleichrichter, für den Verlauf u₂(t). (5 Punkte)
- d) Dreheisenmessgerät, für den Verlauf u₂(t). (5 Punkte)

Hinweis: Es werden nur nachvollziehbare Ergebnisse gewertet.

5 20 Punkte

gegeben

Dehnungsmessung: Halbbrücke + Verstärker

Dehnmessstreifen: R_0 =120 Ω , k=2.1 R_1 = R_0 ·(1-k· ϵ), Belastung auf Druck R_2 = R_0 ·(1+k· ϵ), Belastung auf Zug R_3 = R_0 R_4 = R_0 R_{ϵ} =18 kO

 $R_5=18 k\Omega$ $R_6=18 k\Omega$

gesucht

u_A für folgende Dehnungen:

- a) $\varepsilon=0$ (6 Punkte)
- b) $\varepsilon = 500 \, \mu \text{m/m} (7 \, \text{Punkte})$
- c) $\epsilon = 1000 \, \mu \text{m/m} (7 \, \text{Punkte})$

Empfehlung: Es soll nur der stationäre eingeschwungene Zustand betrachtet werden (rein DC). Die Verstärkung des OPVs soll mit unendlich angenommen werden.

Hinweis: Es werden nur nachvollziehbare Ergebnisse gewertet.